

DISTRIBUTED EMBEDDED SYSTEMS:

DESIGN, MIDDLEWARE

AND RESOURCES

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World

Computer Congress held in Paris the previous year. An umbrella organization for

societies working in information processing, IFIP's aim is two-fold: to support

information processing within its member countries and to encourage technology transfer

to developing nations. As its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical

organization which encourages and assists in the development,

exploitation and application of information technology for the benefit

of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates

through a number of technical committees, which organize events and publications.

IFIP's events range from an international congress to local seminars, but the most

important are:

• The IFIP World Computer Congress, held every second year;

• Open conferences;

• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and

contributed papers are presented. Contributed papers are rigorously refereed and the

rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may

be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working

group and attendance is small and by invitation only. Their purpose is to create an

atmosphere conducive to innovation and development. Refereeing is less rigorous and

papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World

Computer Congress and at open conferences are published as conference proceedings,

while the results of the working conferences are often published as collections of selected

and edited papers.

Any national society whose primary activity is in information may apply to become a full

member of IFIP, although full membership is restricted to one society per country. Full

members are entitled to vote at the annual General Assembly, National societies

preferring a less committed involvement may apply for associate or corresponding

membership. Associate members enjoy the same benefits as full members, but without

voting rights. Corresponding members are not represented in IFIP bodies. Affiliated

membership is open to non-national societies, and individual and honorary membership

schemes are also offered.

DISTRIBUTED EMBEDDED SYSTEMS:

DESIGN, MIDDLEWARE

AND RESOURCES

IFIP 20 th World Computer Congress, TC10 Working
Conference on Distributed and Parallel Embedded
Systems (DIPES 2008), September 7-10, 2008,
Milano, Italy

Edited by

Bernd Kleinjohann
University of Paderborn / C-LAB
Germany

Lisa Kleinjohann
University of Paderborn / C-LAB
Germany

Wayne Wolf
Georgia Institute of Technology
USA

123

Library of Congress Control Number: 2008928940

p. cm. (IFIP International Federation for Information Processing, a Springer Series

in Computer Science)

ISSN: 1571-5736 / 1861-2288 (Internet)

 ISBN: 978-0-387-09660-5 eISBN: 978-0-387-09661-2

springer.com

Copyright 2008 by International Federation for Information Processing.

All rights reserved. This work may not be translated or copied in whole or in part without the written

permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,

NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in

connection with any form of information storage and retrieval, electronic adaptation, computer

software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they

are not identified as such, is not to be taken as an expression of opinion as to whether or not they are

subject to proprietary rights.

Printed on acid-free paper

Editors
Bernd Kleinjohann
University of Paderborn
Germany

Lisa Kleinjohann
University of Paderborn
Germany

Wayne Wolf
Georgia Institute of Technology
Savannah, GA
USA

IFIP 2008 World Computer Congress

(WCC’08)

Message from the Chairs

Every two years, the International Federation for Information Processing hosts a

major event which showcases the scientific endeavours of its over one hundred

Technical Committees and Working Groups. 2008 sees the 20th World Computer

Congress (WCC 2008) take place for the first time in Italy, in Milan from 7-10

September 2008, at the MIC - Milano Convention Centre. The Congress is hosted

by the Italian Computer Society, AICA, under the chairmanship of Giulio Occhini.

The Congress runs as a federation of co-located conferences offered by the

different IFIP bodies, under the chairmanship of the scientific chair, Judith Bishop.

For this Congress, we have a larger than usual number of thirteen conferences,

ranging from Theoretical Computer Science, to Open Source Systems, to

Entertainment Computing. Some of these are established conferences that run

each year and some represent new, breaking areas of computing. Each conference

had a call for papers, an International Programme Committee of experts and a

thorough peer reviewed process. The Congress received 661 papers for the

thirteen conferences, and selected 375 from those representing an acceptance rate

of 56% (averaged over all conferences).

An innovative feature of WCC 2008 is the setting aside of two hours each day for

cross-sessions relating to the integration of business and research, featuring the use

of IT in Italian industry, sport, fashion and so on. This part is organized by Ivo De

Lotto. The Congress will be opened by representatives from government bodies

and Societies associated with IT in Italy.

This volume is one of fourteen volumes associated with the scientific conferences

and the industry sessions. Each covers a specific topic and separately or together

they form a valuable record of the state of computing research in the world in

2008. Each volume was prepared for publication in the Springer IFIP Series by

the conference’s volume editors. The overall Chair for all the volumes published

for the Congress is John Impagliazzo.

For full details on the Congress, refer to the webpage http://www.wcc2008.org.

Judith Bishop, South Africa, Co-Chair, International Program Committee

Ivo De Lotto, Italy, Co-Chair, International Program Committee

Giulio Occhini, Italy, Chair, Organizing Committee

John Impagliazzo, United States, Publications Chair

WCC 2008 Scientific Conferences

TC12 AI Artificial Intelligence 2008

TC10 BICC Biologically Inspired Cooperative Computing

WG 5.4 CAI Computer-Aided Innovation (Topical Session)

WG 10.2 DIPES Distributed and Parallel Embedded Systems

TC14 ECS Entertainment Computing Symposium

TC3 ED_L2L Learning to Live in the Knowledge Society

WG 9.7

TC3

HCE3 History of Computing and Education 3

TC13 HCI Human Computer Interaction

TC8 ISREP Information Systems Research, Education and

Practice

WG 12.6 KMIA Knowledge Management in Action

TC2

WG 2.13

OSS Open Source Systems

TC11 IFIP SEC Information Security Conference

TC1 TCS Theoretical Computer Science

IFIP

• is the leading multinational, apolitical organization in Information and

Communications Technologies and Sciences

• is recognized by United Nations and other world bodies

• represents IT Societies from 56 countries or regions, covering all 5 continents

with a total membership of over half a million

• links more than 3500 scientists from Academia and Industry, organized in more

than 101 Working Groups reporting to 13 Technical Committees

• sponsors 100 conferences yearly providing unparalleled coverage from

theoretical informatics to the relationship between informatics and society

including hardware and software technologies, and networked information

systems

Details of the IFIP Technical Committees and Working Groups

can be found on the website at http://www.ifip.org.

Contents

Preface . xi

Acknowledgements . xiii

Conference Committees . xv

1 Applications and Case Studies

Hierarchically Distributing Embedded Systems for Improved Autonomy. 1
Claudius Stern, Philipp Adelt, Willi Richert, and Bernd Kleinjohann

Sorting Units for FPGA-Based Embedded Systems 11
Rui Marcelino, Horácio Neto, and João M. P. Cardoso

Error-Exploiting Video Encoder to Extend Energy/QoS Tradeoffs for
Mobile Embedded Systems . 23
Kyoungwoo Lee, Minyoung Kim, Nikil Dutt, and Nalini Venkatasubramanian

2 Verification and Validation

Specification-based Verification of Embedded Systems by Automated
Test Case Generation . 35
Christoph M. Kirchsteiger, Christoph Trummer, Christian Steger, Reinhold
Weiss, and Markus Pistauer

Analysis of Periodic Clock Relations in Polychronous Systems 45
Hugo Metivier, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

Formal Correctness of an Automotive Bus Controller Implementation at
Gate-Level . 57
Eyad Alkassar, Peter Böhm, and Steffen Knapp

.

viii Contents

3 Design Methods and Modelling

Unifying HW Analysis and SoC Design Flows by Bridging Two Key
Standards: UML and IP-XACT . 69
Sebastien Revol, Safouan Taha, François Terrier, Alain Clouard, Sébastien
Gerard, Ansgar Radermacher, and Jean-Luc Dekeyser

Expressing Environment Assumptions and Real-time Requirements for
a Distributed Embedded System with Shared Variables 79
Simon Tjell and João M. Fernandes

The Components Data Flow Machine: An Intermediate Modeling Format
to Support the Design of Automobiles E/E Systems Architectures 89
Augustin Kebemou and Ina Schieferdecker

On the Use of Software Quality Metrics to Improve Physical Properties
of Embedded Systems . 101
Ricardo M. Redin, Marcio F. S. Oliveira, Lisane B. Brisolara, Julio C. B.
Mattos, Luis C. Lamb, Flávio R. Wagner, and Luigi Carro

4 Resource Managment

Minimizing Leakage Energy with Modulo Scheduling for VLIW DSP
Processors . 111
Meng Wang, Zili Shao, Hui Liu, and Chun Jason Xue

Using Imprecise Computation Techniques for Power Management in
Real-Time Embedded Systems . 121
Geovani Ricardo Wiedenhoft and Antônio Augusto Fröhlich

A Power Model for Register-Sharing Structures . 131
Balaji V. Iyer and Thomas M. Conte

5 Middleware and Communication

Design and Implementation of a FTT-CAN Communication
Infra-Structure for the RT-femtoJava Processor . 143
Rita Kalile Almeida Andrade, Thomás Alimena Del Grande, Tiago Bücker,
and Carlos Eduardo Pereira

Communication Paradigms for High-Integrity Distributed Systems with
Hard Real-Time Requirements . 151
Santiago Urueña, Juan Zamorano, José A. Pulido, and Juan A. de la Puente

.

Contents ix

6 Distributed Operating Systems and Timing

TinyOS Extensions for a Wireless Sensor Network Node Based on a
Dynamically Reconfigurable Processor . 161
Enkhbold Ochirsuren, Heiko Hinkelmann, Leandro Soares Indrusiak, and
Manfred Glesner

Scheduling Dependent Distributable Real-Time Threads in Dynamic
Networked Embedded Systems . 171
Sherif Fahmy, Binoy Ravindran, and E. D. Jensen

An Efficient Time Annotation Technique in Abstract RTOS Simulations
for Multiprocessor Task Migration . 181
Henning Zabel and Wolfgang Müller

7 Task and Data Partitioning

Handling QoS Dependencies in Distributed Cooperative Real-Time
Systems . 191
Luı́s Nogueira and Luı́s Miguel Pinho

Topology-Aware Energy Efficient Task Assignment for Collaborative
In-Network Processing in Distributed Sensor Systems 201
Baokang Zhao, Meng Wang, Zili Shao, Jiannong Cao, Keith C.C. Chan, and
Jinshu Su

Data Partitioning Techniques for Partially Protected Caches to Reduce
Soft Error Induced Failures . 213
Kyoungwoo Lee, Aviral Shrivastava, Nikil Dutt, and Nalini
Venkatasubramanian

Preface

This year, the IFIP Working Conference on Distributed and Parallel Embedded Sys-
tems (DIPES 2008) is held as part of the IFIP World Computer Congress, held in
Milan on September 7-10, 2008. The embedded systems world has a great deal
of experience with parallel and distributed computing. Many embedded computing
systems require the high performance that can be delivered by parallel computing.
Parallel and distributed computing are often the only ways to deliver adequate real-
time performance at low power levels.

This year’s conference attracted 30 submissions, of which 21 were accepted.
Prof. Jörg Henkel of the University of Karlsruhe graciously contributed a keynote
address on embedded computing and reliability. We would like to thank all of the
program committee members for their diligence.

Wayne Wolf, Bernd Kleinjohann, and Lisa Kleinjohann

Acknowledgements

We would like to thank all people involved in the organization of the IFIP World
Computer Congress 2008, especially the IPC Co-Chairs Judith Bishop and Ivo De
Lotto, the Organization Chair Giulio Occhini, as well as the Publications Chair John
Impagliazzo. Further thanks go to the authors for their valuable contributions to
DIPES 2008. Last but not least we would like to acknowledge the considerable
amount of work and enthusiasm spent by our colleague Claudius Stern in preparing
the proceedings of DIPES 2008. He made it possible to produce them in their current
professional and homogeneous style.

IFIP TC 10 Working Conference on Distributed
and Parallel Embedded Systems (DIPES 2008)
IFIP World Computer Congress,
September 7-10, 2008, Milan, Italy

General Chair
Wayne Wolf Georgia Institute of Technology, USA

PC-Chair
Bernd Kleinjohann University of Paderborn, C-LAB, Germany

Program Committee
Jean Arlat LAAS CNRS, France
Christophe Bobda University of Potsdam, Germany
Arndt Bode Technical University München, Germany
João M. P. Cardoso Technical University of Lisbon, Portugal
Luigi Carro UFRGS, Brazil
Matjaž Colnarič University of Maribor, Slovenia
Tom Conte North Carolina State University, USA
Alfons Crespo Lorente Technical University of Valencia, Spain
Nikil Dutt University of California, Irvine, USA
Petru Eles Linköping University, Sweden
Rolf Ernst Technical University Braunschweig, Germany
Bernhard Eschermann ABB Switzerland Ltd., Switzerland
João M. Fernandes University of Minho, Portugal
Uwe Glässer Simon Fraser University, Canada
Luı́s Gomes New University of Lisbon, Portugal
Rajesh Gupta University of California, San Diego, USA
Wolfgang Halang Fernuniversität Hagen, Germany
Uwe Honekamp Vector Informatik GmbH, Germany
Pao-Ann Hsiung National Chung Chen University, Taiwan
Ahmed Jerraya CEA-LETI, MINATEC, France
Kane Kim University of California, Irvine, USA
Raimund Kirner Technical University Vienna, Austria
Bernd Kleinjohann University of Paderborn, C-LAB, Germany

Lisa Kleinjohann University of Paderborn, C-LAB, Germany
Hermann Kopetz Technical University Vienna, Austria
Johan Lilius Turku Centre for Computer Science, Finland
Ricardo J. Machado University of Minho, Portugal
Erik Maehle University of Lübeck, Germany
Vincent Mooney Georgia Institute of Technology, USA
Frank Mueller North Carolina State University, USA
Carlos E. Pereira UFRGS, Brazil
Luı́s Pinho Polytechnical Institute of Porto, Portugal
Peter Puschner Technical University Vienna, Austria
Franz J. Rammig University of Paderborn, Germany
Achim Rettberg University of Oldenburg, Germany
Bernhard Rinner Klagenfurt University, Austria
Luis-Miguel Santana Ormeno ST Microelectronics, France
Hènrique Santos University of Minho, Portugal
Klaus Schneider University of Kaiserslautern, Germany
Edwin Sha University of Texas, Dallas, USA
Zili Shao Hong Kong Polytechnic University, Hong Kong
Joachim Stroop dSPACE, Germany
P. S. Thiagarajan National University of Singapore, Singapore
François Terrier CEA LIST, France
Lothar Thiele ETH Zürich, Switzerland
Flavio R. Wagner UFRGS, Brazil
Wayne Wolf Georgia Institute of Technology, USA
Dieter Wuttke Technical University Ilmenau, Germany
Alex Yakovlev University of Newcastle, UK
Laurence T. Yang St. Francis Xavier University, Canada

Organizing Committee
Lisa Kleinjohann University of Paderborn, C-LAB, Germany
Claudius Stern University of Paderborn, C-LAB, Germany

Co-Organizing Institutions
IFIP TC 10, WG 10.2, and WG 10.5

Hierarchically Distributing Embedded Systems
for Improved Autonomy

Claudius Stern, Philipp Adelt, Willi Richert, and Bernd Kleinjohann

Abstract Distribution of functionality among nodes is a contemporary research
issue for embedded systems, e.g. in the field of autonomous mobile robot groups.
In such groups, the concept of distribution is mainly used to achieve flexibility and
robustness that could not be reached by a single robot. Here it will be used as a
design-paradigm for a robot’s internal architecture. In this paper, a hierarchically
distributed robot architecture will be introduced which leads to an improved auton-
omy of the overall system.

Key words: distributed embedded systems, autonomous systems, robot control

1 Introduction

Distribution is a contemporary research issue for embedded systems. Currently, in
the field of distributing a task to a group of nodes much research work is done (e.g.
[2, 15]). By distributing a task, the probability for a system-wide failure or for con-
tinuously incorrect execution decreases because of the diversity and independency
of the distributed system parts.

In robotic soccer, which is a challenging research and application field for the
combination of real time embedded systems design with intelligent autonomous
behavior, distribution is applied at two levels. At the multi-robot level the paradigm
of distribution is mainly used to build homogeneous cooperating teams of robots.
At the level of single robots this paradigm can considerably support robustness and
flexibility. That will be shown in this paper describing the Paderkicker robots.

The Paderkicker team [9] consists of five robots that already participated suc-
cessfully in several international competitions including the RoboCup 2006 World

Claudius Stern · Philipp Adelt · Willi Richert · Bernd Kleinjohann
Universität Paderborn, C-LAB
e-mail: claudis, padelt, richert, bernd@c-lab.de

Please use the following format when citing this chapter:

Stern, C., et al., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded Systems: Design,
Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 1–9.

2 Claudius Stern, Philipp Adelt, Willi Richert, and Bernd Kleinjohann

Championship. Our platform asks for the whole range of research areas needed for
a successful deployment in the real world. This includes embedded real-time ar-
chitectures [3, 5, 10], realtime vision [11, 12, 13], learning and adaptation from
limited sensor data, skill learning [7] and methods to propagate learned skills and
behaviours in the robot team [8].

In this paper we focus on the hierarchically distributed architecture of the Pader-
kicker robots. In Section 2 we describe the current system with its components. Sec-
tion 3 then focuses on the modular system design of the Paderkicker robot, covering
the functional design as well as the architecture of hardware. Section 5 gives an
overview of the vision module which includes three individual real-time image pro-
cessing modules whose outputs then are merged. The behavior module is described
in Section 4. Section 8 concludes the paper and a short survey of future develop-
ment directions and research fields is given regarding the architecture described in
this paper.

2 Robot outline

The current generation of the Paderkicker robots is equipped with an omnidirec-
tional drive which enables the robot to do translational and rotational movements
simultaneously. This is a great advantage over the prior generation described in [9]
that featured a differential drive with two driven wheels. Here a four wheel omnidi-
rectional drive is used instead of a three wheel one. The construction of the wheel
suspension ensures that all four wheels are pressed onto the ground which leads to
enhanced stability.

Besides the driving system, the ball handling system has been redesigned from
scratch. The ball handling system consists of two main components: the ball kicking
system and the dribbling system. The previously used mechanical kicking system
has been replaced by an electromagnetic solenoid which provides more control over
the kicking power and reduces the actuation latency. The ball dribbling system has
been redesigned to be more robust concerning collisions. All servo motors have
been mechanically decoupled with rubber blocks so that even hard collisions will
not harm the servos with excessive mechanical shocks.

The same mechanical decoupling has been applied to the servos of the active vi-
sion system to tolerate collisions with high kicked balls. In contrast to omnivision
systems that are currently used by many other teams, three individual pan-tilt cam-
eras are used in the vision system. Each camera may independently focus and track
a different object of interest like ball, goal or other robots.

Hierarchically Distributing Embedded Systems for Improved Autonomy 3

3 System design

In this section the structure of the Paderkicker robot will be shown. First, the func-
tional architecture will be described. Then we will show how this logical structure
maps onto a hardware structure. After the description of the underlying structures,
the behavior system as well as the vision system will be introduced.

3.1 Functional architecture

During the system design process, four main functional units were identified (vision,
driving, ball handling and behavior) and designed in a modular way. A robot of the
Paderkicker team consists of a behavior module, the vision module, the driving mod-
ule, and the ball handling module. The function of the last three is self-explaining
by their respective names. The behavior module is the topmost module in a robot’s
hierarchy. It controls the robot’s overall behavior.

The different modules are realized in a distributed way as described below. All
components communicate with a message format which is used in the entire system
independent of the respective medium for communication.

The functional units were further divided into sub-modules as depicted in Fig-
ure 1. This structure allows the independent development of the different functional
units. Furthermore, the functional units were designed to work autonomously on
their own presenting an already abstracted interface to the rest of the system. A
dedicated interface sub-module manages the communication and merges data. This
hierarchical structure enables the functional unit ”Behavior module” to act on a very
high level of abstraction.

As an example, the driving module is designed to work autonomously and part of
the robot’s low-level behavior has been mapped to it. Distributing the drive-control
task to a group of sub-modules instead of using only one monolithic module leads
to more flexibility and robustness. The sub-modules within are realized on individ-
ual microcontroller boards working as a distributed system. Each microcontroller
board realizes an individual motor controller and odometry data logger with a short
measurement-control latency and therefore can react very fast. Each board also in-
corporates an emergency handling unit which leads to a more robust behavior of the
whole driving module.

Other teams hardly describe their overall software architecture. Often they de-
scribe in detail the behavior system and its mechanisms but not the underlying over-
all structure. Nevertheless, a common approach is a layered structure, e.g. used by
the 5dpo–2000 team [6] or the AIS–BIT Robots team [4]. The AIS–BIT Robots
team uses two layers at different abstraction levels. The first layer deals with low-
level processing of sensor data and image data. The second layer then deals with
abstract behaviors. Both layers contain different modules but the modules within
one layer are not further hierarchically arranged.

4 Claudius Stern, Philipp Adelt, Willi Richert, and Bernd Kleinjohann

Fig. 1 Paderkicker hierarchical module structure

3.2 Hardware architecture

The functional structure described above is mapped onto a hardware architecture as
depicted in Figure 2. The central processing unit is a Pentium M ULV PC board
running Linux. The vision algorithms and the behavior system are realized here.
The Mini-ITX board is equipped with a Mini PCI wireless LAN card and handles
team communication.

As described above, the modules for ball handling and driving are divided into
sub-modules. These sub-modules are realized on microcontroller boards equipped
with an Atmel microcontroller which comes with an on-chip CAN bus interface.
Groups of microcontroller boards communicate over CAN with the members of the
according group. One dedicated microcontroller board in each group manages the
communication with the central Mini-ITX board over a USB connection.

4 Behavior based system

The actual version of the behavior system is realized as a parallel distributed soft-
ware system (Figure 3), where parallel running processes are responsible for the
dedicated functional hardware units vision, driving, and ball handling. In addition,

Behavior module

Driving module Ball handling module

Vision module

Coordinator

Wheel
controller

A
bs

tr
ac

t i
nt

er
fa

ce

Central behavior Behavior
Sub-module

Coordinator

Ball handling
controller

Vision coordinator Video
processing

Hierarchically Distributing Embedded Systems for Improved Autonomy 5

a new timing concept now allows the different subsystems like the above mentioned
to run at different cycle duration. Using a double buffered shared memory approach
it is no problem if e.g. the cycle time of the vision system increases because the
analyzed image contains more detectable objects than usual or if the ball handling
component has to run at a higher frequency than the driving component.

The architecture’s design is driven by the need of the sub-modules Active Vision,
Driving, and Ball Handling to run at different sample rates. In the former archi-
tecture all the functionality was done in the same module at the same speed. The
problem was that functionality that needs to run at a high speed got at some point
corrupted data from modules running at slower speed, which lead to unpredictable
behavior in some cases. To avoid this, at first the different functionality was identi-
fied and regrouped in separate sub-modules. Then we introduced a double-buffered
communication mechanism that separates the actual data on which the individual
modules are working on from the communication process.

Each sub-module has its own Sense-Plan-Act cycle. The Act part is of course no
real action but rather new data for the other modules or part of the final action which
first has to be sent to the hardware via the Router. All sub-modules are running
concurrently. While they are implemented at the moment as Java Threads it is no
difficulty to let them reside on even different processors.

3 FireWire

cameras

ultra low voltage

Pentium M

15 Watt total

1 x AVR

System control

3 x AVR

ball handling

5 x AVR

drive
USB

USB

C
A

N
-B

U
S

FireWire

WLANWLAN

Mini PCI

Mini-PCI card

802.11 a/b/g

Fig. 2 Paderkicker hardware architecture

6 Claudius Stern, Philipp Adelt, Willi Richert, and Bernd Kleinjohann

Fig. 3 Asynchronous architecture for the behavior module

5 Vision system

The vision system also has been designed using the paradigm of hierarchical dis-
tribution. The vision systems span four levels of abstraction, beginning with the
low-level vision based on an optimized algorithm for low latency real-time color
segmentation [12]. The original algorithm has been adapted to run on a PC under
an ordinary Linux system. Three digital FireWire cameras are mounted on pan-tilt
units to cover the whole 360◦ view. Each camera is handled by an independent task
doing the low-level image processing. On the next level of hierarchy the outputs of
these tasks are merged into a robot-centric view of the surrounding objects and land-
marks. Figure 4 shows a visualization of the particle filter. Each triangle indicates a
hypothesis of the robot’s position with the hollow triangle being the resulting posi-
tion estimation of the robot in the world coordinate system. An abstract interface is
presented to the next level of hierarchy enabling the user of the interface to specify
e.g. scan modes of the cameras.

The next level of abstraction includes two particle filters [1] and a specialized
control module. One particle filter estimates the robot’s position relative to known
landmarks. The second particle filter estimates the position of the ball relative to the

�������	
����	� ����	�	�
����� ���	
����	�

�����

�����	
����� ����	
����� ����
��������

����	��

���
�

����	
����	 !
����
"	���
�"�
��"��
��"��	
�"�
��"��

����#

����#

����	
����	 !
����
"	���
�"�
��"��
��"��	
�"�
��"��

����#

����#

����	
����	 !
����
"	���
�"�
��"��
��"��	
�"�
��"��

����#

����#
$

%
�

&'�()�

)��	����
�����������

���	� '��	��
�	��� ����	
����	�

Hierarchically Distributing Embedded Systems for Improved Autonomy 7

Fig. 4 Visualization of the particle filter and the robot’s perceived artefacts (dots).

robot. The control module again presents an abstract interface to the next level of
abstraction. Using this interface two views are accessible. One “global view” with
global world coordinates including all absolute coordinates of objects and land-
marks. However, the second view is robot-centric using relative coordinates.

The behavior based system descibed in Section 4 is located on the highest level
of abstraction. A dedicated module within this system takes care about the behavior
of the underlying vision system, e.g. which part of the field is to be examined or
whether the ball has to be tracked.

Compared to systems using an omnivision camera [14], on our system the res-
olution is higher for a given viewing direction. Furthermore the system allows the
over-sampling of a specified region of interest. Due to the constant usage of ab-
straction throughout the system this is done autonomously, e.g. for the position of
the ball. This enables the system to recognize even distant objects that would be
indistinguishable in a typical omnivision setup with only one fixed camera.

6 Coordination of functional units

The architecture does not impose limits upon the way data is exchanged between
functional units. Most units will work asynchronously regarding each other and
can work in a time-triggered or event-triggered manner. An example for an asyn-
chronous time-triggered operation are the cameras attached to the vision system
that will deliver data in periodic intervals that cannot practically be synchronized

8 Claudius Stern, Philipp Adelt, Willi Richert, and Bernd Kleinjohann

with the rest of the system. The high-level behavior system is running at a different
rate unsynchronized to the cameras. In contrast, sensors like a ball detection sensor
can trigger event processing and event messages that are non-deterministic in their
timing.

To bridge the gap between such different execution semantics, an abstraction
layer is introduced. It decouples the communication of the unit. Double buffering
with atomic copying is used to ensure integrity for data transfers. Depending on the
type of data, new data either is queued or overwrites an old value for a last-recently-
received type of information.

7 Inter-robot strategy

This work focuses on the hierarchical distribution of functional units over embedded
systems onboard a robot. Nevertheless, integrating the robot with its surrounding is
an important task, too. Conceiving multiple autonomous mobile robots as a team
brings up the question of task distribution as well.

Different from onboard the robot, task distribution is dynamic and depends on
external non-deterministic parameters like the amount of robots available. Merging
multiple robots of different types into a heterogeneous team allows for specialized
task fulfillment but further complicates task allocation.

In general a strategy is needed to conquer a given objective with the available
resources. In the existing homogeneous Paderkicker robot team the external archi-
tecture comprises a central dedicated server that oversees availability and state of
the robots. It holds the strategy to be executed and dynamically decides which robot
executes what task. This design has several drawbacks. The central component is a
single point of failure that can render a complete team inoperable when it fails. Since
communication reliability is of major concern in almost all situations, the team was
designed to complete a task autonomously once the role is assigned.

To enhance this situation further, in the future the task decision process will also
be distributed among the robots. This allows for decentralized strategic components
that can be locally implemented on a robot. Integrating new and yet unknown robots
with unique features does not imply having to change a central server rule-set any-
more. Instead the robot specific parts of task assignment strategies can be imple-
mented locally and therefore be distributed among the set of robots.

8 Outlook and conclusion

The future direction clearly indicates an even further distributed approach internal
as well as external of a single robot. A distributed communication framework will
act as a framework towards autonomous decision making in teams. By using a mod-
ular design and distributing functional units of the system onboard a robot among

Hierarchically Distributing Embedded Systems for Improved Autonomy 9

embedded systems, the stability of the whole system increases. Distributing the driv-
ing low-level behavior over multiple microcontrollers leads to faster reactions, e.g.
regarding the compensation of transmission slip.

References

1. M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for
online nonlinear/non-gaussian bayesian tracking. Signal Processing, IEEE Transactions on
[see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 50(2):174–188,
Feb 2002.

2. Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons, Aniruddha
Gokhale, and Douglas C. Schmidt. A platform-independent component modeling language
for distributed real-time and embedded systems. J. Comput. Syst. Sci., 73(2):171–185, 2007.

3. D. Beier, R. Billert, B. Brüderlin, Bernd Kleinjohann, and Dirk Stichling. Marker-less vision
based tracking for mobile augmented reality. In Proceedings of the Second International
Symposium on Mixed and Augmented Reality (ISMAR 2003), Tokyo, Japan, October 2003.

4. Stefan Christen, Ronny Hartanto, Benjamin Maus, Walter Nowak, Sven Olufs, Paul G. Ploger,
Michael Reckhaus, Christian Rempis, Azamat Shakhimardanov, and Lars Weber. AIS–BIT
Robots Team Description 2006. Technical report, FH Bonn-Rhein-Sieg and Fraunhofer AIS,
2006.

5. Natascha Esau, Bernd Kleinjohann, Lisa Kleinjohann, and Dirk Stichling. Visitrack – video
based incremental tracking in real-time. In Proceedings of the 6th IEEE International Sympo-
sium on Object-oriented Real-time Computing (ISORC ’03), Hakodate, Japan, May 2003.

6. Antnio Paulo Moreira, Paulo Costa, Andr Scolari, Armando Sousa, and Paulo Marques. 5dpo–
2000 Team Description for RoboCup 2006. Technical report, FEUP - Faculdade de Engenharia
da Universidade do Porto, 2006.

7. Willi Richert and Bernd Kleinjohann. Towards robust layered learning. In IEEE International
Conference on Autonomic and Autonomous Systems (ICAS’07), June 2007.

8. Willi Richert, Bernd Kleinjohann, and Lisa Kleinjohann. Evolving agent societies through
imitation controlled by artificial emotions. In International Conference on Intelligent Com-
puting, ICIC 2005, number 3644 in LNCS, pages 1004–1013. Springer-Verlag Berlin, June
2005.

9. Willi Richert, Bernd Kleinjohann, Markus Koch, and Philipp Adelt. The paderkicker team:
Autonomy in realtime environments. In Proceedings of the Working Conference on Dis-
tributed and Parallel Embedded Systems (DIPES 2006), October 2006.

10. Dirk Stichling. VisiTrack - Inkrementelles Kameratracking fr mobile Echtzeitsysteme. PhD
thesis, Universitt Paderborn, Fakultt fr Elektrotechnik, Informatik und Mathematik, 2004.

11. Dirk Stichling and Bernd Kleinjohann. CV-SDF – a model for real-time computer vision ap-
plications. In IEEE Workshop on Application of Computer Vision, Orlando, Florida, December
2002. IEEE.

12. Dirk Stichling and Bernd Kleinjohann. Low latency color segmentation on embedded real-
time systems. In Design and Analysis of Distributed Embedded Systems. Kluwer Academic
Publishers, November 2002.

13. Dirk Stichling and Bernd Kleinjohann. Edge vectorization for embedded real-time systems
using the CV-SDF model. In Proceedings of the 16th International Conference on Vision
Interfaces (VI 2003), Halifax, Canada, June 2003.

14. Felix v. Hundelshausen, Sven Behnke, and Raúl Rojas. An omnidirectional vision system that
finds and tracks color edges and blobs. Lecture Notes In Computer Science, 2377:374–379,
2002.

15. Jules White and Douglas C. Schmidt. Automated configuration of component-based dis-
tributed real-time and embedded systems from feature models. Proceedings of the 17th Annual
Conference of the International Federation of Automatic Control, 2008.

Sorting Units for FPGA-Based Embedded
Systems

Rui Marcelino, Horácio Neto, and João M. P. Cardoso

Abstract Sorting is an important operation for a number of embedded applica-
tions. As sorting large datasets may impose undesired performance degradation,
acceleration units coupled to the embedded processor can be an interesting solution
for speeding-up the computations. This paper presents and evaluates three hard-
ware sorting units, bearing in mind embedded computing systems implemented
with FPGAs. The proposed architectures take advantage of specific FPGA hard-
ware resources to increase efficiency. Experimental results show the differences in
resources and performances among the three proposed sorting units and also be-
tween the sorting units and pure software implementations for sorting. We show that
a hybrid between an insertion sorting unit and a merge FIFO sorting unit provides a
speed-up between 1.6 and 25 compared to a quicksort software implementation.

Key words: sorting, FPGAs, embedded systems, special-purpose architecture

1 Introduction

Search and sorting are becoming important operations for embedded computing.
Even modest devices are being furnished with amounts of storage that were un-
thinkable only a couple of years ago. Handheld portable devices, such as PDAs and
cell phones, have now the capacity to store large datasets and finding the contents
the user wants is becoming critical. For example, an MP3 player with 160 GB can
store about 40,000 songs!

Rui Marcelino
UALG/EST – Campus da Penha – Faro, Portugal
e-mail: rmarcel@ualg.pt

Horácio Neto · João M. P. Cardoso
UTL/IST/INESC-ID – Rua Alves Redol – Lisboa, Portugal
e-mail: hcn@inesc.pt, jmpc@acm.org

Please use the following format when citing this chapter:

Marcelino, R., Neto, H. and Cardoso, J.M.P., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed
Embedded Systems: Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 11–22.

12 Rui Marcelino, Horácio Neto, and João M. P. Cardoso

Also, new emerging applications, like sensor data logs, internet traffic, transac-
tions logs, where the information occurs in the form of data streams [1], show how
important are database and data stream management systems. The performance of
queries in these systems is often dominated by the cost of the sorting algorithm [2].
Hence, sorting units able to improve performance may play an important role.

Our goal is to research efficient sorting units to couple to a general purpose pro-
cessor (GPP) for FPGA-based embedded systems (see Figure 1). In this paper we
present three sorting units and compare the execution time of those units to pure
software solutions (e.g., quicksort). The three sorting units proposed explore paral-
lel processing, streaming, and FPGA resources. To combine key properties of those
sorting units we also present and evaluate a hybrid sorting unit.

This paper is organized as follows. In section 2 we review related work on sorting
machines. Section 3 describes our proposed architectures. Section 4 shows experi-
mental results. Finally, section 5 draws some conclusions.

Fig. 1 Block diagram of the target system. The sorting units are instantiated as an OPB custom
core and the data to be sorted are stored in BRAMs connected to the OPB bus.

2 Background and Related Work

Sorting has been exhaustively studied in the area of computer science and many
sorting algorithms exist [3]. On GPPs, quicksort is the fastest of the common sorting
algorithms for general case sorting [3]. Albeit the performance of quicksort, sorting
remains a time spending operation.

A number of approaches have been studied to accelerate sorting operations on
GPPs, namely the use of hyper-threaded technology to accelerate quicksort in the
Intel compiler [4], and the use of graphics processors [2].

Concerning application-specific architectures, two different approaches have
been considered for accelerating sorting operations, one focusing on variations on
the sorting networks [5], and the other exploring systolic linear arrays [9]. Although
those approaches may achieve high-performance sorting, both rely on a large num-
ber of simultaneous load/stores to feed the sorting unit. This hampers their practical
use with current technology.

Sorting Units for FPGA-Based Embedded Systems 13

Sorting networks are based on levels with arrays of 2-input swap-comparators.
Martinez et al. [6] propose, for the Burrows Wheeler Transform operation, a hard-
ware sorting network with two levels of pipelining, where the data is sorted in an
iterative scheme. The sorting unit deals with 128 characters and results show a large
FPGA area occupation and a maximum clock frequency of about 50 MHz.

Zhang and Zheng [7] present a parallel sorting algorithm using a fixed size sort-
ing network. Their architecture is composed by three components: input queues,
pipelined sorting network, and a termination detection circuit. Results for different
queues size and numbers are shown.

Lin and Liu [8] propose a cascade of compare-swap cells to build the sorting cir-
cuit. The data to be sorted propagate through the sorting unit. They argue their ap-
proach is scalable and is suitable for VLSI implementations. However, they present
an ASIC implementation in a 0.32 m CMOS technology, dealing only with 32 ele-
ments of 16 bits and achieving a 66 MHz maximum clock frequency.

Parahami and Kwai [9] propose a cell for systolic linear arrays where the con-
trol signals are pipelined with the data to be sorted. In their work, two parallel
comparisons are performed in each cell. Bednara et al. [10] present a hybrid hard-
ware/software implementation of a sorting algorithm that uses merge-sort for its
sequential part and a Parhami and Kwai [9] type systolic array for the parallel part.
In their approach, the sorting unit is implemented in FPGAs and is coupled to a
microprocessor.

Recently, Ratnayke and Amer [11] propose an FPGA implementation variation
of the counting sort algorithm. This algorithm is a histogram based sorter and ex-
plores the BRAM structures of the FPGAs for the modified counting sort algorithm.
The sorting unit was implemented in a Virtex II-Pro FPGA and the results show
that a significant number of FPGA resources is required to sort a large number of
elements.

In this work, we exploit three different sorting units to couple to a host soft-
core processor, bearing in mind the trade-off between hardware resources and per-
formance. The target system is tested using FPGA devices. Next sections describe
those sorting units.

3 Sorting Units

The three approaches for hardware sorting units proposed herein are:

• Odd-Even Sorting Network Machine, based on sorting networks where we re-
duce the traditional area used for sorting network implementations by using an
iterative scheme.

• Insertion Sorting Machine, based on a scalable and linear array.
• FIFO-based Merge Sorting Machine, based on the available and efficient FPGAs

FIFO support using BRAMs.

Next, we describe in detail each one of the sorting units mentioned above.

14 Rui Marcelino, Horácio Neto, and João M. P. Cardoso

3.1 Odd-Even Sorting Network Machines

Hardware solutions using sorting networks, such as the one proposed in [7], require
a large number of hardware resources to implement the complete network. To save
hardware resources we propose a solution based on Batchers odd-even [5] sorting
network with reuse of resources. We use an iterative sorting unit, where the sorting
network is reduced to a single row. In this approach, the maximum computational
time complexity is O(n), being n the number of elements to sort.

The basic element of sorting networks is the comparator-swap block, shown in
Figure 2(a), which performs the elementary sort between two elements. The block
receives the two data elements to be sorted A, B and outputs the two sorted elements
L and H, where L means “less than” or “equal”, and H means “greater than”. In
addition a /CHANGE signal flags if a swap between the two input data elements has
been done or not.

As the hardware implementation of the sorting network may require too many
resources, especially when dealing with a large number of inputs, a split of the
network in iterative sequential stages is performed. On this implementation, referred
herein as “sequential network”, the hardware is reused to implement all the required
computing stages of the sorting network with a smaller number of physical stages.
Note that this sorting network requires a simple control unit and is used for its
simplicity, regularity and scalability.

Two schemes have been implemented using the odd-even transposition sorting
algorithm. The first one, named sorting network with one pipeline level (SN-I),
refers to a machine employing hardware reuse in every clock cycle. For this, a ba-
sic comparator-swap is used as shown in Figure 2(a), but without output registers.
Registers are placed at the end of the stage to store the results every clock cycle
(see Figure 2(b)). A switch network, implemented by an array of multiplexers, is
included between the comparators and the output registers. The switch network is
responsible for the data alignment, as show in Figure 3, then the output is fed to the
input of the unit and this loop is continuously repeated until the data input items are
sorted. Until all the elements become sorted, pairs of elements are switched every
clock cycle. The sorting is finished when no swap is performed in two consecu-
tives clock cycles of the machine, considering all comparator-swap blocks, or when
it reaches the final number of iterations (n). This is detected by the control logic
that reads the output global flag, /CHANGE, which is an AND of all the individual
/CHANGE flags.

The second approach implemented is a sorting network with two pipeline levels
(SN-II). The sorting scheme used is the same, the odd-even transposition sorting
network, but the data alignment is performed by the use of two comparator lev-
els (see Figure 4). Now the comparator-swap blocks have the outputs registered,
creating a 2-stage pipelined machine. These two-stages are reused every two clock
cycles. As before, the sorting finishes when the control logic detects that no swap
was performed on all comparator-swap blocks in two consecutives clock cycles or
when it reaches the final number of iteration (n).

Sorting Units for FPGA-Based Embedded Systems 15

3.2 Insertion Sorting Machine

The insertion sorting machine is represented by the dependence graph shown in
Figure 5(a), where each node represents a comparison/insert cell. The number of
cells equals the number of elements to be sorted. A new element to be sorted/inserted
is broadcasted to all nodes and comparisons are performed in order to find the right
node for inserting this new element. Depending on the sort direction, ascending or
descending, the most right node reflects the minimum or the maximum element. The
data are read from the machine through the right cell in a sequential way (one by
one), or in a parallel way. In this machine, the sorting operation is overlapped with
the input data operations.

Considering the ascending sorting mode, where the element with the lowest value
will be at the right element of the sorting array, as represented in Figure 5(a). In one
cell we have an element a from the previous cell, and an element b in the current
cell register. For ascending mode of sort the comparator performs the following
condition: b ≤ a. The new element to be inserted c is compared with the data held
in all the cell registers. In the general case, where the element a has not the largest
possible value, we have one of three possibilities for each cell of the array:

(a) (b)

Fig. 2 (a) Comparator-Swap block, the output registers are not used in the SN-I machine imple-
mentation (b) SN-I, one pipeline level sorting unit

(a) (b)

Fig. 3 Switch network for data alignment on SN-I, an extra temporary register have been used: (a)
Odd; (b) Even

16 Rui Marcelino, Horácio Neto, and João M. P. Cardoso

Fig. 4 SN-II, two pipeline levels sorting unit. In this machine the comparator-swap has the output
registers.

• c ≥ a: c is inserted in this cell and the a element and all the elements on its
right are right shifted.

• a > c ≥ b: c is inserted immediately after a and the b element and all the
elements on its right are right shifted.

• c < b: no change since the insertion point is somewhere on the right of this
cell.

Fig. 5 Insertion sort: (a) Dependence graph for insertion sorting in ascending mode with one cell
per node (∞ denotes the largest possible value); (b) Basic Cell Comparator- Register.

The basic element of the sorting unit is implemented by the cell showed in Fig-
ure 5(b). The cell is composed by a comparator, a multiplexer, a register to hold data,
and control logic. The array is composed of a number of these cells, corresponding
to the number of elements to be sorted (see Figure 6). Two tags work in a pipeline
fashion interconnecting the cells. One tag represents the active cells and works like
a carry flag (CY) that is propagated through the cells, as the elements are inserted
in the sorting unit. The other tag (LE) reflects the comparison result between the
new element to sort and the element presented in the register of each cell. If the new
element is greater than the element presented in the register this tag is reset, other

(a) (b)

Sorting Units for FPGA-Based Embedded Systems 17

way is set. The two tags drive the control logic located in the cell, in order to define
the exact cell where this new element is inserted.

Fig. 6 Insert Sorting circuit block diagram for n-elements.

3.3 FIFO-based Merge Sorting Machine

Our FIFO-based merge sorting unit uses the merge scheme shown in Figure 7. The
sorting structure consists of three FIFO queues: two input FIFOs and one output
FIFO. The input FIFOs have depth n/2 and the output FIFO has depth n. This unit
assumes that the data in the two input FIFOs have been sorted before.

A truly FIFO-based implementation needs to start by sorting two data elements,
each one in a different input FIFO and then repeatedly performs sorting of two sets
of k/2 elements to achieve k sorted elements until it reaches the last iteration where
n elements are sorted based on the two sets of n/2 elements previously sorted. This
approach might be, however, inefficient and thus a different strategy can be used to
feed the FIFO-based merge sorting unit with the two sorted sets of n/2 elements
each. For example, we can use a Sorting Network Unit or an Insertion Sorting Unit
to sort those two sets of n/2 elements.

The merging process is performed by presenting the data of the two previous
sorted input FIFOs to the inputs of a comparator and a multiplexer. The comparator
output defines which element is “greater than” and signals the multiplexer control
line in order to select the appropriate element to be written to the output FIFO. A
new data element is sorted every clock cycle and the process repeats until all the
data are processed. The computational time complexity of this approach is O(n),
being n the number of elements to sort.

Although not exploited in this work, it is possible to build sorting units of this
kind using more than 2-input FIFOs and more than two levels of FIFOs. Topologies
based on trees of FIFOs can be used and might be suitable when it is possible to sort
concurrently the data elements in the input FIFOs.

18 Rui Marcelino, Horácio Neto, and João M. P. Cardoso

Fig. 7 Block diagram for the FIFO-based merge sorting machine. Two input FIFO and one output
FIFO are used.

4 Experimental Results

The sorting units and their control units have been specified in parameterized behav-
ioral RTL-VHDL code. A Xilinx Spartan 3 FPGA (xc3s400-5fg456) has been used
to characterize the FPGA implementation of those units. For this particular study
we use sorting units working with 32-bit data elements.

The Embedded Development Kit (EDK) and WebISE, release 8.2i, from Xilinx
were used for system development and configuration, logic synthesis and place-
ment and routing. For prototyping and test, we use a system with a Xilinx 32-bit
MicroBlaze softcore processor. For the particular cases presented herein, the sorting
units are instantiated as an OPB custom core and the data to be sorted are stored in
BRAMs connected to the OPB bus. For data transfer between the BRAMs and the
sorting units a DMA controller is included. The MicroBlaze was configured with
default parameters, i.e., without the optional datapath units, and without caches.
The stack memory was adjusted for the quicksort algorithm requirements. The soft-
ware implementations were compiled using the C compiler included in the EDK
(mb-gcc), with the -O2 option selected.

Our analysis is performed in two steps, one regarding the FPGA resources and
the other the execution time of the sorting units being evaluated. All the results
obtained by the proposed sorting units are compared with the software algorithm
quicksort. In these experiments both the sorting units and the softcore processor
were running at the same clock frequency (50 MHz for the validations done using
the FPGA board). Note, however, that higher speed-ups could be obtained if we
consider maximum frequencies for each unit as the maximum clock frequency of
MicroBlaze in the FPGA used is around 100 MHz.

Table 1 summarizes the FPGA resources used for the sorting units and the max-
imum clock frequencies achieved. For the comparisons, we use units with size
n = 128. The results indicate that the Sorting Network with two levels (SN-II) needs
20% more FPGA resources than the Sorting Network with one level (SN-I). The
amount of FPGA resources required for the Insertion Sorting unit is similar to SNI.
As can be seen, the FIFO-based merge sorting unit uses mainly BRAMs and much
less FPGA resources than the other sorting units.

Sorting Units for FPGA-Based Embedded Systems 19

For execution time analysis, we use sets with 16K 32-bit unsigned integers (N).
Those sets were randomly generated (uniform distribution). The data communica-
tion between the memory and the sorting unit is performed by a DMA controller.

The FIFO-based Merge Sorting Unit requires that two blocks of data with n/2
elements be previously sorted and stored in the input FIFOs. In this case, the sorting
unit will then give the n elements sorted. To sort those n/2 elements we tested the
use of a Sorting Network and an Insertion Sorting Unit. The sorting units are able
to directly sort a certain pre-defined number of elements (n). Sorting data N size
over n needs a merge-sort scheme. For that, we use a software implementation of
a merge-sort (identified as software-merge), where each block of data to be sorted
(with size n) is sorted by the hardware sorting unit.

Table 1 Maximum clock frequencies and FPGAs resources obtained after Place and Route for the
sorting units.

Sorting Unit LUTs FFs Slices BRAM Frequency
(MHz)

SN I (N = 128) 14,629 3,976 7,438 0 80
SN II (N = 128) 18,764 8,345 8,906 0 160
Insertion Sorting 12,954 4,296 6,486 0 198
Machine (N = 128)
FIFO-based Merge 516 444 384 3 104
Sorting (N = 128)1

1 This machine uses the same resources and achieves the same
maximum clock frequency for sizes below or equal n = 512.

Figure 8 shows the speed-ups of the hybrid proposed solution (Insertion + FI-
FObased merge sorting unit) over software quicksort. The hybrid units used here
are of size 32, 64, and 128. As can be seen, the speed-up is high and increases with
the size of the sorting units. For machines with size 256 with 128 pre-sorted queue,
which is the maximum size of sorting units we have experimented with the FPGA
used, a speed-up of about 25 has been achieved.

Fig. 8 Speed-ups for different FIFO-based merge sorting units over software quicksort.

20 Rui Marcelino, Horácio Neto, and João M. P. Cardoso

As previously referred, when the number of data elements to be sorted surpasses
the number of elements sorted by each execution of the sorting unit, a software-
merge algorithm is used. In this later case, a degradation in the speed-ups is present
(the inflexion points in the chart shown in Figure 8). Note that the software- merge
adds a computational time complexity O(n · logn), being n the number of elements
to sort.

Figure 9 gives estimations for sorting a set of 16K elements with three sorting
units. We exploit the case of having support for simultaneous load/store operations
to communicate data to the sorting units. For the estimations, we use two com-
pletely parallel Sorting Networks (SN-II), able to directly sort 16 and 32 elements.
The second machine is a 1024-element Insertion Sorting Unit. The third machine
is a FIFO-based Merge Sorting Unit able to output 512 sorted elements using two
sets of 256 elements sorted by an Insertion Sorting Unit. The results take into ac-
count typical DMA load/store latencies, acquired from experimental measurements.
For calculating the execution time when sorting 16K elements, the overhead of a
software-merge has been included.

These results indicate that the Sorting Network SN-II with size 16 (SN II 16)
achieves worse results than software quicksort, even with 16 simultaneous load/store
operations. The SN-II with size 32 (SN II 32) surpasses quicksort when considering
more than 2 simultaneous load/store operations. The Insertion Sort Unit with size
1024 (Insertion 1024) achieves for all the cases better performance than quicksort,
but since the data is fed to the sorting unit sequentially no gain is obtained by per-
forming simultaneous load/store operations. The highest speed-ups are obtained by
the Insertion 256 + FIFO-based merge sorting unit with size 512 (Insertion 256
+ FIFO 512). In this case, the speed-up increases between 1 to 2 simultaneous
load/store operations, as is explained by the fact that this particular unit uses 2 input
FIFOs.

Fig. 9 Speedups for sorting 16K, 32-bit elements, with different sorting units exploring the number
of simultaneous load/store operations

For the estimation we use the following equations (1) and (2), adapted from [5]:

T(n) =
n
k

(tload + tstore)+ tsort unit(n) (1)

Sorting Units for FPGA-Based Embedded Systems 21

where T(n) is the total time to sort n elements, considering that n is the maximum
number of elements to sort directly on the sorting unit, k represents the simultaneous
load/store operations, tload the time to load data from the memory, tstore the time to
store data in the memory, and tsort unit(n) the time required by the sorting unit to sort
n elements, considering the data are been loaded

Tso f tware merge(N) =
[(

p2− p+4
)

2p−1
]

T(n) (2)

where Tso f tware merge(N) is the total time to sort N, elements using software merge,
and p = log(N). For larges sorts typically the number N is much greater than n.

5 Conclusions

We describe in this paper three different approaches for hardware sorting units. The
sorting units proposed have been coupled to a microprocessor in an FPGAbased em-
bedded system. The sorting units explore different architectures: sorting networks
with one or two levels, an insertion sorting array, and a particular sorting unit based
on FIFOs. We evaluated these units by coupling them to the peripheral on-chip
bus in a system based on a softcore microprocessor (Xilinx MicroBlaze) and im-
plemented in an FPGA. The results show the execution times achieved and the re-
sources needed by each sorting unit. From our preliminary study, the best unit, when
a small number of load/store operations can be simultaneously performed (1 or 2), is
a hybrid between an insertion sorting and an FIFO-based merge sorting. This sorting
unit provides speed-ups between 1.6 and 15 compared to a quicksort pure software
solution running in the microprocessor of the system. Even when the number of
simultaneously load/store operations is higher (3 or more), the FIFO-based merge
sorting unit is from the three units tested in this paper the fastest.

Acknowledgments

This work has been partially supported by the project COBAYA, funded by the
Portuguese Foundation for Science and Technology (FCT).

References

1. Golab L., Özsu M.T.: Issues in data stream management, ACM SIGMOD Record, v.32 n.2,
p.5–14, June, San Diego, California (2003)

2. Govindaraju, N., Raghuvanshi, N., Henson, M., Tuft, D., Manocha, D.: GPUTera- Sort: high
performance graphics co-processor sorting for large database management, in Proceedings
of the 2006 ACM SIGMOD international conference on Management of data, June 26-29,
Chicago, IL, USA (2006)

22 Rui Marcelino, Horácio Neto, and João M. P. Cardoso

3. Knuth, D.E.:The Art of Computer Programming, Vol. 3 - Sorting and Searching. Addison-
Wesley (1973)

4. Rajiv, R.D.P.:Accelerating Quicksort on the Intel® Pentium® 4 Processor with Hyper-
Threading Technology, http://softwarecommunity.intel.com/articles/eng/2422.htm, October
(2007)

5. Batcher, K.:Sorting Networks and Their Applications. Proc. AFIPS Spring Joint Computer
Conf. Vol. 32, pp. 307–314, Atlantic City, NJ, USA, 30 April - 2 May (1968)

6. Martı́nez J., Cumplido, R.R., Feregrino, C.:An FPGA-based parallel sorting architecture for
the Burrows Wheeler transform, Proceedings International Conference on Reconfigurable
Computing and FPGAs, 28-30 Sept., Puebla City, Mexico (2005)

7. Zhang, Y., Zheng, S.Q.: An Efficient Parallel VLSI Sorting Architecture, VLSI Design, vol.
11, no. 2, pp. 137–147, (2000)

8. Lin, C.S., Liu, B.D.:Design of a Pipelined and Expandable sorting Architecture with Simple
Control Scheme. IEEE International Symposium on Circuits and Systems, Volume: 4, pp.
217–220, 26-29 May. Scottsdale, Arizona, USA (2002)

9. Parhami, B., Kwai, D.M.: Data-driven control scheme for linear arrays. Application to a stable
insertion sorter, IEEE Trans. On Parallel and Distributed Systems, January 1999, Vol. 10, No.
1, pp. 23–28, (1999)

10. Bednara, M., Beyer, O., Teich, J., Wanka, R.: Tradeoff Analysis And Architecture Design
Of Hybrid Hardware/Software Sorter, Application-Specific Systems, Architectures, and Pro-
cessors. Proceedings of the IEEE International Conference on Application-Specific Systems,
Architectures, and Processors, Proceedings, pp. 299, 10-12 July, Boston, MA, USA (2000)

11. Ratnayake, K., Amer, A.: An FPGA Architecture of Stable-Sorting on a Large Data Volume :
Application to Video Signals, 41st Annual Conference on Information Sciences and Systems,
pp. 431–436, 14-16 March, Baltimore, USA (2007)

Error-Exploiting Video Encoder to Extend
Energy/QoS Tradeoffs for Mobile Embedded
Systems

Kyoungwoo Lee, Minyoung Kim, Nikil Dutt, and Nalini Venkatasubramanian

Abstract Energy/QoS provisioning is a challenging task for video applications in
power-constrained mobile embedded systems. Many error-resilient video encodings
allow us to exploit errors and generate a range of acceptable tradeoff spaces by con-
trolling the amount of errors in the system. This expanded tradeoff space allows
system designers to comparatively evaluate different operating points with varying
QoS and energy consumption by aggressively exploiting error-resilience attributes,
and can potentially result in significant energy savings. Specifically, we propose an
error-aware video encoding technique that intentionally injects errors (drops frames)
while ensuring QoS in accordance with error-resilience. The novelty of our ap-
proach is in active exploitation of errors to vary the operating conditions for fur-
ther optimization of system aspects. Our experiments show that our error-exploiting
video encoding can reduce the energy consumption for an encoding device by 37%
in video conferencing over a wireless network, without video quality degradation,
compared to a standard video encoding technique for a test video stream. Further-
more, we present the adaptivity of our approach by incorporating the feedback from
the decoding side to achieve the QoS requirement under dynamic network status.

1 Introduction

Due to the rapid deployment of wireless communications, video applications on
mobile embedded systems such as video telephony and video streaming have grown
dramatically. A major challenge in mobile video applications is how to efficiently
allocate the limited energy resource in order to deliver the best video quality. A sig-
nificant amount of power in mobile embedded systems is consumed by video pro-

Kyoungwoo Lee · Minyoung Kim · Nikil Dutt · Nalini Venkatasubramanian
Department of Computer Science, School of Information and Computer Sciences, University of
California, Irvine, CA 92697, USA
e-mail: {kyoungwl,minyounk,dutt,nalini}@ics.uci.edu

Please use the following format when citing this chapter:

Lee, K., et al., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded Systems: Design,
Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 23–34.

24 Kyoungwoo Lee, Minyoung Kim, Nikil Dutt, and Nalini Venkatasubramanian

cessing and transmission. Also, error resilient video encodings demand extra energy
consumption in general to combat the transmission errors in wireless video commu-
nications. Thus, it is challenging and essential for system designers to explore the
possible tradeoff space and to increase the energy saving while ensuring the quality
satisfaction even under dynamic network status. In this paper, we introduce the no-
tion of active error exploitation to effectively extend the tradeoff space between en-
ergy consumption and video quality, and present an adaptive error-exploiting video
encoding to maximize the energy saving with minimal quality degradation.

Tradeoffs between energy consumption and QoS (Quality of Service) for mobile
video communication have been investigated earlier [3, 5, 12, 14, 17]. It is interest-
ing to observe that the delivered video data is inherently error-tolerant: spatial and
temporal correlations between consecutive video frames are used to increase the
compression efficiency, and results in errors at the reconstructed video data. These
naturally induced errors from the encoding algorithms degrade the video quality, but
they may not be perceived by the human eye. This inherent error-tolerance of video
data can be exploited to increase the energy reduction for mobile embedded systems.
For instance, relaxing the acceptable quality of the video reduces the overhead for
the exhaustive searching algorithm by exploring a partial area instead of the entire
region. Further, we exploit errors actively for the purpose of energy reduction. In
our study, one way of active error exploitation is to intentionally drop frames before
the encoding process. By dropping frames, we eliminate the entire video encoding
process for these frames and thereby reduce energy consumption while sacrificing
some loss in the video quality. Note that the effects of dropping frames on video
quality are partially canceled with the nature of error-tolerance in video data.

To cope with transmission errors such as packet losses, error-resilient video en-
coding techniques [2, 9, 15, 16, 18] have been investigated to reduce the effects
of transmission errors on QoS. Most existing error resilient techniques judiciously
adapt their resilience levels considering the network status. Interestingly, our ap-
proach, combining these error-resilient techniques with intentional dropping frames,
presents several pros and cons. First, we can improve the video quality to the level
that error-resilient techniques achieve by considering these frame drops as packet
losses occurring in the network. Second, we can increase the error margins that
video encoders potentially exploit for maximal energy reduction, i.e., we can drop
more frames. On the other hand, the error-resilience increases the compressed video
data in general, and so raises the energy consumption for data transmission. Thus,
this active error-exploitation approach with error resilient techniques significantly
enlarges the tradeoff space among energy consumption for compression, energy
consumption for transmission, and QoS in mobile video applications. Furthermore,
our error exploiting video encoding scheme extends the applicability of error re-
silient schemes, even when the network is error-free.

In this paper, we propose a new knob, error injection rate (EIR) that controls
the amount of data to be dropped. This EIR knob can be used to explore the trade-
off space between the energy consumption and video quality, unlike in previous
approaches. Specifically, we present an error-exploiting video encoding with EIR
based on an existing error-resilient video encoding, PBPAIR (Probability-Based

Error-Exploiting Video Encoder to Extend Energy/QoS Tradeoffs 25

Power-Aware Intra-Refresh) [9]. Our new approach, called Error-Exploiting PB-
PAIR or EE-PBPAIR, is composed of two units: error-injection unit and error-
canceling unit. The error-injection unit drops frames intentionally according to EIR.
And the error-canceling unit applies PBPAIR to encode video data resilient against
intentional frame drops. Active error exploitation can reduce the overheads for trans-
mission and even the decoding, and results in the energy savings of all components
in an encoding-decoding path in distributed mobile embedded systems. However,
very aggressive error injection in EE-PBPAIR can degrade the video quality sig-
nificantly, and there is a need to monitor the delivered video quality in distributed
systems and to adjust the EIR to ensure satisfactory quality. Thus, we also present
adaptive EE-PBPAIR, which adapts the EIR based on the quality feedback from the
decoding side while minimizing the energy consumption.

The contributions and results of our work are:

• We propose the notion of active error exploitation, that extends the energy/QoS
tradeoff space for video encoding on power-constrained embedded systems.

• We present an error-exploiting video encoding, EE-PBPAIR, by dropping frames
intentionally in accordance with an error resilient scheme, PBPAIR [9].

• We present a feedback-based quality adjustment technique by adapting the EIR
to meet the quality constraint – adaptive EE-PBPAIR.

• We demonstrate the efficacy of our approach: as compared to a standard video
encoding based on H.263 [7], EE-PBPAIR reduces the energy consumption of
an encoding device by up to 37% over a video stream without quality degrada-
tion, and by up to 49% at the cost of 10% quality degradation.

2 Background
Energy and QoS aware adaptations have been studied for video applications on mo-
bile embedded systems in a cross-layer manner [12, 17]. In particular, Mohapatra et
al. [12] explored the effects of video encoding parameters such as quantization scale,
IP-ratio, and motion estimation algorithms on energy consumption and QoS, and
proposed an integrated power management technique with middleware adaptations
aware of system configurations. On the other hand, Eisenberg et al. [3] exploited
the knowledge of the concealment method at the decoder to reduce the transmission
power. However, although energy/QoS aware schemes have studied the tradeoff be-
tween energy consumption and QoS, they did not take into account error resilience
against unreliable transmission and active error exploitation.

One of the most effective methods to achieve error-resilient video is to introduce
the intra-coded frame (I-frame) periodically: since I-frames are decoded indepen-
dently, they protect the propagation of the transmission errors and even encoding er-
rors in previous frames. However, the transmission of I-frames causes delay and jit-
ter (due to relatively large size) compared to predictively-coded frames (P-frames),
and the loss of I-frames is more sensitive on QoS than that of P-frames [2, 9]. To
mitigate both the propagation of the transmission errors and the overheads of large
I-frames, recently intra-MB (Macroblock) refresh approaches have been proposed

26 Kyoungwoo Lee, Minyoung Kim, Nikil Dutt, and Nalini Venkatasubramanian

[2, 9, 16]. Intra refresh techniques distribute intra-MBs among frames, which not

only removes the overheads of I-frames but also improves the error-resilience. While

most intra-MB refresh techniques have been focused on alleviating the effects of the

transmission errors on the video quality, Kim et al. [9] proposed an energy-efficient

and error-resilient video encoding named PBPAIR, and presented tradeoffs among

error resilience, encoding efficiency, and energy consumption for video encoding.

However, existing error resilient techniques have focused on how to manage the er-

rors from network in a passive manner (passive error exploitation). On the contrary,

our active error exploitation maximizes the feature of applications by intentional

error injection – an approach has not been applied to video encoding earlier.

Our approach actively exploits the error tolerance of video data by injecting er-

rors intentionally at the application level, and an error resilient video encoder along

with adaptive error injection minimizes the effect of injected errors on the QoS.

Therefore, our error-exploiting video encoding approach aggressively exploits error

resilience to achieve the maximal energy gain while ensuring the QoS, and further

opens opportunities to expand the tradeoff spaces between QoS and energy con-

sumption in mobile embedded systems.

3 Our Approach

3.1 Fundamentals of Active Error Exploitation

II
FDT

WNI

Tx

WNI

Rx III
FDT

Dec

CPU

I
FDT

AP : Access Point
WAN : Wide Area Network

: Video Data Flow

Rx : Receiver
: TransmitterTx

FDT : Frame Drop Type
Enc : Encoder
Dec : Decoder

CPU : Central Processing Unit
WNI : Wireless Network Interface

wiredwired
WAN

Network

AP 1 AP 2

wireless wireless

Mobile 1 Mobile 2

Transmission Errors

CPU

Enc

Fig. 1 System Model and Frame Drop Types I/II/III for Active Error Exploitation

Fig. 1 shows our system model for mobile video conferencing. This mobile video

conferencing system consists of two mobile devices and the network environment.

Each mobile device is modeled as a mobile embedded system composed of a CPU

and a WNI, where video data is encoded (or decoded) and transmitted (or received).

The network consists of WAN and two wireless access points, each of which pro-

vides the wireless communication channel for each mobile device. For simplicity,

we consider one path from an encoder to a decoder for mobile video conferencing.

We exploit errors actively. In our study, active exploitation of errors means in-

tentional frame dropping in mobile embedded systems. For the purpose of energy

reduction, video frames can be dropped by any component in Fig. 1. For instance,

the Decoder can drop the delivered video data to reduce the decoding energy (Frame
Drop Type III as in Fig. 1). Another possibility is that the Transmitter drops video

data to save the communication energy, and error resilient techniques take care of

Error-Exploiting Video Encoder to Extend Energy/QoS Tradeoffs 27

the dropped data in advance (Frame Drop Type II). Further, the Encoder can drop
frames intentionally before the encoding process, and encode the rest of frames ro-
bust against the dropped frames, which are considered as lost packets in network
(Frame Drop Type I). Note that dropping frames at the Encoder is the most effec-
tive in terms of energy reduction since it affects the energy consumption across all
the following components in an encoding-decoding path as drawn in Fig. 1, and the
energy consumption for encoding (Enc EC) is relatively high compared to those for
the other components in our system model. Therefore, in this particular work, we
only consider Frame Drop Type I (i.e., intentional frame drop at the Encoder) for
active error-exploitation approach. Type II and III remain as our future work.

Fig. 2 Error-Exploiting Video Encoder: Error-Injection Unit and Error-Canceling Unit

Our error-exploiting video encoder is composed of two units, error-injection unit
and error-canceling unit, as shown in Fig. 2. The error-injection unit controls the
amount of errors for the purpose of energy reduction, and the error-canceling unit
reduces the effects of the injected errors on the video quality using an error-resilient
video encoder. The Error Controller acts as an error-injection unit, taking into ac-
count the constraint (e.g., required video quality) and the feedbacks from the decod-
ing side (e.g., reconstructed video quality) and from the network (e.g., packet loss
rate); furthermore, it intentionally injects the amount of errors according to a new
knob – error injection rate (EIR), and generates the error-injected video data as illus-
trated in Fig. 2. Finally, the Error-Resilient Video Encoder acts as an error-canceling
unit, and generates the error-aware video data by encoding the error-injected video
data with parameters in preparation for downstream network packet losses as well
as intentionally injected errors.

3.2 EE-PBPAIR: An Error-Exploiting Video Encoder

We now present EE-PBPAIR (Error-Exploiting PBPAIR), an approach that injects
errors intentionally by “Dropping Frames” as an error-injection unit, and encodes
video resiliently with “PBPAIR” as an error-canceling unit as shown in Fig. 2.

Dropping frames is one way of injecting errors intentionally. In this study, we
consider a simple frame dropping approach, PFD (Periodic Frame Dropping). PFD
periodically drops frames according to EIR. For instance, PFD with 10% of EIR
drops every 10th frame. PFD evenly distributes the effects of frame dropping on QoS
over a video stream. Note that the quality will be deliberately maintained by the fea-

Error−Injected
Video Data

Original
DataVideo

Error−Aware
Video Data

Feedback
(e.g., Frame Dropping)

Error Controller Error−Resilient

(e.g., PBPAIR)
Parameters

Constraints
(e.g., quality requirement)

(e.g., quality feedback,
packet loss rate)

Error−Injection Unit

Knob

(e.g., Error_Rate,
Intra_Threshold)

Error−Exploiting Video Encoder

Error−Canceling Unit

(Error Injection Rate)

Video Encoder

28 Kyoungwoo Lee, Minyoung Kim, Nikil Dutt, and Nalini Venkatasubramanian

Update EIR

Decrease EIR

QfQc >

EIR = EIRI

Qc
IEIR

para = EIR + PLR1

f0
f1

f2
f3

Original
Video Data

Error-Injected
Video Data

f0
f2

f3

para 2

para 1

Lossy Network

Error-Aware
Video Data

f0
f2

f3

Lossy
Video Data

f0
f2

D
ec

od
er

fn : n th video frame

PFD : Periodic Frame Dropping

para : parameters for PBPAIR

: control
: video data

NO

YES

Adaptive EIR

Error Injection

BEGIN

f1 is dropped P
B

P
A

IR

(e.g. PFD)

Error Controller

EE-PBPAIR

f3 is lost

(PACKET LOSS RATE)

: input (constraint and parameter)

PLR

Qf

: feedback

I
c

(QUALITY FEEDBACK)

EIR

CONSTRAINT)
Q

INJECTION RATE)
Initial

(QUALITY

(
Increase EIR

ERROR

Fig. 3 Flow of Error Controller and Adaptive EIR in EE-PBPAIR for Mobile Video Applications

ture of error-resilient PBPAIR. We use PBPAIR as an error-resilient video encoder

since the authors in [9] have demonstrated its energy efficiency while maintaining

video quality and robustness against network packet losses. PBPAIR takes two pa-

rameters as shown in Fig. 3. The first parameter (para1 = Error Rate) indicates

the current network status such as packet loss rate (PLR), and the second parame-

ter (para2 = Intra T hreshold) represents the level of error resilience requested. To

consider both injected errors and packet losses, EE-PBPAIR calculates the sum of

EIR and PLR for para1 while PBPAIR originally takes PLR as para1. For instance,

the first parameter (para1) in EE-PBPAIR is set to 15% when EIR is 10% while PLR

in network is 5%. Note that active error exploitation is orthogonal to PBPAIR and

can be applied to any error-resilient and energy-efficient video encoding technique

which adapts algorithmic parameters according to the network status.

Our error-exploiting video encoder saves the energy consumption in several

ways: i) intentional frame dropping saves energy consumption since EE-PBPAIR

skips frame encodings according to EIR. ii) the energy consumption for video en-

coding is reduced since EE-PBPAIR adaptively introduces the more intra-MBs in-

stead of inter-MBs for error resilience due to the intentional frame drops. iii) inten-

tional frame dropping can reduce the encoded video file size, which propagates the

energy saving downstream to the Transmitter, the Receiver, and even the Decoder.

A high EIR increases the energy reduction for encoding but decreases the QoS,

if it is beyond a manageable point for error-resilient encoding. To keep the QoS

degradation minimal, our approach is able to constrain the EIR based on the feed-

back from the decoding side. Fig. 3 describes this adaptive EIR feature in Error
Controller. Error Controller takes the quality constraint Qc and sets the initial error

injection rate EIRI . Then it receives the feedback such as Q f and PLR as shown in

the feedback loop of Fig. 3. If Q f is less than Qc, the current EIR is bad in terms

of QoS, and so the EIR is decreased. Otherwise, it is increased (the flow of “Adap-

tive EIR” in Fig. 3). Based on EIR, the error injection module periodically drops

frames. Thus, Error Controller forwards the error-injected video data to the PB-
PAIR as shown in Fig. 3. Also para1 is delivered to the PBPAIR, which encodes

the error-injected video data robust against the amount of errors indicated as para1,

with para2 selected by PBPAIR methodology. Consequently, the encoded video

data is now error-aware, i.e., it is cognizant of injected errors and packet losses as

illustrated in Fig. 3. This adaptive video encoder adjusts EIR to meet the quality

constraint with minimal energy consumption. So we believe that our adaptive ap-

proach can be effectively used to adjust our video encoder under a dynamic network

Error-Exploiting Video Encoder to Extend Energy/QoS Tradeoffs 29

environment for maximal energy reduction while ensuring the QoS. Note that the
frequencies of feedbacks such as Q f and PLR are beyond this work, and we assume
that feedback channels are reliable.

4 Experiments

4.1 Experimental Setup

Fig. 4 Experimental Framework for Mobile Video Conferencing System - System Prototype + NS2

For interactive multimedia applications such as mobile video conferencing in
distributed embedded systems, an end-to-end experimental system framework is a
necessity since all components in a distributed system work interactively and affect
other components in terms of energy consumption and performance. Thus, we eval-
uated EE-PBPAIR on top of an end-to-end framework as shown in Fig. 4 consisting
of a System Prototype [10] and NS2 simulator [13]. The System Prototype emulates
a mobile embedded system and is detailed in our technical report [10].

The left side of Fig. 4 shows the preprocessing step, where a pattern of dropped
frames is generated according to an EIR. CPU power numbers, video encoder pa-
rameters, network status (PLR), and quality constraint are inputs to System Proto-
type, where a video encoder compresses a video stream. System Prototype analyzes
the first set of results – Analysis 1 – such as the energy consumption for encod-
ing (Enc EC), and calculates the encoded size and the encoding completion time of
each video frame, which are used for generating the network traffic for the follow-
ing network simulation. Analysis 1 succinctly shows the CPU energy for encoding
at the sender. Next, NS2 simulates the generated network traffic with a set of config-
urations including the network topology and WNI power values, and estimates the
energy consumption (Tx and Rx EC) for WNIs – Analysis 2. Thus Analysis 2 cap-
tures the end-to-end networking effects, including those of the transmitter and the
receiver. Finally at the receiver, the System Prototype decodes the transmitted video
data based on generated packet losses and frame arrival times from NS2, and evalu-
ates the energy consumption for decoding (Dec EC) and the video quality measured
in PSNR (Peak Signal to Noise Ratio) in Analysis 3. Thus Analysis 3 captures the
CPU energy for decoding at the receiver (Power consumption numbers for CPU [6]
and WNI [8] are configured as shown in the tables on the right side of Fig. 4). By

Packet Losses
Arrival Time

AP 1 AP 2Wired Network Active

0.411 0.0010.121

Idle

simulation output

simulation input

operation

temporary data
: Control Flow
of Simulation

: Video Data Flow

Frame Size
Execution Time

Analysis 1 Analysis 2

WNI Energy for Transmit

Analysis 3

CPU Energy for Decoding

CPU Power Numbers Mobile 1

Encoder Tx

Prototype
System

Mobile 2

Decoder

System
Prototype

Rx

Wireless Network Wireless Network

Quality Constraint

Frame Dropping Policy

Error Injection Rate

Frame−Dropped Pattern

CPU Energy for Encoding
(Enc EC)

WNI Energy for Receive
(Tx EC)

(Rx EC)
Video Quality
(Dec EC)

(PSNR)

NS2 simulator

Encoding Parameters

Frame Dropping Traffic
Generator Packet Traffic

WNI Power Numbers (Watts)

CPU Power Numbers (Watts)

Sleep

Transmit Receive

1.425 0.80.925

Sleep

0.045

Idle

WNI Power Numbers

Packet Loss Rate
Network Topology

Video Stream

30 Kyoungwoo Lee, Minyoung Kim, Nikil Dutt, and Nalini Venkatasubramanian

combining Analysis 1, Analysis 2 and Analysis 3, we are able to measure the entire
end-to-end energy savings for our proposed scheme.

Using NS2, we simulate the network consisting of two IEEE 802.11 WLANs
(Wireless Local Area Network) and a wired network connecting them as shown
in Fig. 4. Each WLAN is composed of one access point (AP 1 or AP 2), and one
mobile device (Mobile 1 or Mobile 2). We exclude the effects of traffic from other
mobile stations since they affect the energy consumption of WNI in our mobile
devices. Instead, we limit the data rate of WNI, which constrains the encoded bit
rate, and show clearly the effects of the varying data size generated by the Encoder.
For wireless connection, the data rate is set at 1 Mbps, considered to be an actual
data rate [4, 11], and the link layer delay at 25 µs. NS2 generates packet losses for
a given PLR. Each encoded video frame is composed of multiple packets if its size
is larger than MTU (Maximum Transfer Unit), 1.5 KB in our simulation. A frame
is considered lost if any packet of the frame is lost through the network simulation.

Recall that our EE-PBPAIR approach combines PFD with PBPAIR. PBPAIR
takes two parameters, para1 and para2. We set para1 (Error Rate) as the sum of
EIR and PLR. For comparison, para2 (Intra Threshold) is chosen for requested
quality with the same compression efficiency as GOP-K (Group-Of-Picture with K)
[9]. In this study, GOP-K based on H.263 [7] is defined as a standard video encoder,
where K indicates the number of P-frames between I-frames. In GOP-K, we change
K for resilience against the transmission errors in network as in [1, 9]. As a test video
sequence, FOREMAN in QCIF format (176×144 pixels) is used. To constrain the
bandwidth, we consider that the bitrate is 64 kbps (kilobits per second) and frame
rate is 5 fps (frames per second).

4.2 Experimental Results

We present three sets of results. First we show the energy reduction due to active er-
ror exploitation (Section 4.2.1). Second, we demonstrate the expanded design space
allowing better exploration of tradeoff alternatives (Section 4.2.2). Finally, Sec-
tion 4.2.3 demonstrates the efficacy of adaptive EE-PBPAIR that maintains quality
under dynamic network conditions by incorporating the quality feedback.

4.2.1 Energy Reduction from Active Error-Exploitation
To show the effectiveness of our proposed technique, we evaluates EE-PBPAIR with
10% EIR in comparison to GOP-3 considering 10% of PLR in network.

Fig. 5(a) shows the effectiveness of an error-exploiting approach on the energy
reduction. The plots present the normalized energy consumption and the video qual-
ity of EE-PBPAIR to those of GOP-3, and clearly show that EE-PBPAIR is very
effective compared to GOP-3 in terms of each category of energy consumption with
slight quality degradation. Specifically, EE-PBPAIR consumes 34% less energy than
GOP-3 for encoding (Enc EC) since it drops 10% of video frames and compresses
more macro-blocks with less expensive intra encodings than predictive encodings.
In terms of energy consumption for transmitting video data (Tx EC), EE-PBPAIR

Error-Exploiting Video Encoder to Extend Energy/QoS Tradeoffs 31

Energy Consumption and Quality

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Enc EC Tx EC Enc EC +

Tx EC

Dec EC Rx EC Dec EC +

Rx EC

Quality in

PSNR

N
o

rm
a

li
z
e

d
 R

a
ti

o
 o

f
E

E
-P

B
P

A
IR

 t
o

 G
O

P
-3

EE-PBPAIR GOP-3

(a) EIR = 10%

Effects of Varying Error Injection Rate

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20

EIR (%)

N
o

rm
a

li
z
e

d
 t

o
 G

O
P

-3

GOP-3 (baseline)
EE-PBPAIR Enc EC
EE-PBPAIR Dec EC
EE-PBPAIR Tx EC
EE-PBPAIR Quality in PSNR

(b) EIR = 0% to 20%

Fig. 5 Effects of Error Injection Rate on Energy Consumption and Video Quality in EE-PBPAIR
compared to GOP-3 (PLR = 10%, FOREMAN 300 frames)

sends a similar amount of data within less time than GOP-3, which results in the

slight energy reduction. Thus, the energy consumption for the source (Enc EC and

Tx EC) is reduced by 23% with EE-PBPAIR, at the cost of 4% quality degradation.

Note that 1% quality degradation indicates about 0.31 dB reduction from the PSNR

value for GOP-3. At the destination, EE-PBPAIR reduces the energy consumption

by 8% for the decoding (Dec EC), which mainly results from dropping 10% frames

at the source. Note also that more intra-encoded MB results in more energy con-

sumption for the decoding but 10% frame dropping compensates for this effect.

EE-PBPAIR saves the energy consumption for the receiver (Rx EC) by 3% mainly

due to the smaller duration for receiving. The energy consumption at the destination

(Dec EC + Rx EC) is reduced by 5%. These results are very effective in energy re-

duction with respect to all energy categories at the cost of slight quality degradation,

which is an acceptable tradeoff for power-hungry mobile embedded systems.

We now illustrate how EIR is effective as a knob to tradeoff the quality for energy

reduction. To observe the effects of varying EIR on quality and energy consumption,

we compare EE-PBPAIR with GOP-3 by varying EIR from 0% to 20%. Fig. 5(b)

shows the normalized video quality and each energy consumption of EE-PBPAIR

to those of GOP-3. Since we adapt para2 of PBPAIR to minimize the transmission

overhead, the energy consumption for the data transmission (Tx EC) of EE-PBPAIR

with varying EIR is close to that of GOP-3. With an increase of EIR, quality is still

managed within an insignificant degradation of quality, and this quality manage-

ment is mainly because of the error-resilient feature of EE-PBPAIR. With 20% EIR,

the loss of quality is 7% in PSNR. Fig. 5(b) clearly shows that increasing the EIR

significantly saves energy consumption for encoding (Enc EC). Since the portion of

intra-MBs for each frame is increasing for error resilience, the energy consumption

for the decoding is higher than GOP-3 with low EIR between 0% and 5%. However,

with an increase of EIR, the number of frames to be decoded is decreasing and thus

the energy consumption decreases. With 20% EIR, we obtain 45% energy reduction

for encoding, and 17% reduction for decoding at the cost of 7% quality degradation.

32 Kyoungwoo Lee, Minyoung Kim, Nikil Dutt, and Nalini Venkatasubramanian

Video Quality vs. Source Energy Consumption

0

10

20

30

40

15 20 25 30 35

PSNR (dB)

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
o

u
le

s
)

EE-PBPAIR PBPAIR GOP-8

(a) Video Quality in PSNR vs. Source Energy
Consumption (Enc EC + Tx EC)

Video Quality vs. Destination Energy Consumption

0

2.5

5

7.5

10

15 20 25 30 35

PSNR (dB)

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
o

u
le

s
)

EE-PBPAIR PBPAIR GOP-8

(b) Video Quality in PSNR vs. Destination
Energy Consumption (Dec EC + Rx EC)

Fig. 6 Extended Tradeoff Space between Video Quality and Energy Consumption by EE-PBPAIR
in comparison to GOP-8 and PBPAIR (EIR = 0% to 50%, PLR = 5%, FOREMAN 300 frames)

4.2.2 Extended Energy/QoS tradeoff
Fig. 6(a) plots the energy consumption at the source vs. quality of EE-PBPAIR com-

pared to PBPAIR and GOP-8, and clearly shows that design space of EE-PBPAIR

is much larger and more effective than those of PBPAIR and GOP-8. As compared

to PBPAIR, the tradeoff space of EE-PBPAIR subsumes all spaces for PBPAIR

since indeed EE-PBPAIR with 0% of EIR is PBPAIR. As compared to GOP-8, EE-

PBPAIR generates a better design space in terms of the energy reduction (by up to

37%) without losing video quality, and presents even better video quality with less

energy consumption. Further, relaxing the quality requirement (such as 10% QoS

degradation) compared to GOP-8 increases the energy reduction at the source by

up to 49%. Thus, EE-PBPAIR very effectively expands the design space between

the source energy consumption and video quality by exploiting the intentional er-

rors. Fig. 6(b) depicts the tradeoff space between the energy consumption at the

destination and the video quality, and clearly shows that EE-PBPAIR greatly ex-

tends the spaces explored by PBPAIR and GOP-8. However, the energy saving at

the destination using EE-PBPAIR is less effective than that at the source since the

resilience approach encodes more intra-MBs, which decreases the energy saving

resulting from the intentional error injection. Even then, EE-PBPAIR can save the

energy consumption by 3% without losing QoS compared to GOP-8.

4.2.3 Adaptive EE-PBPAIR: Ensuring Quality under Dynamic Network
To show the effectiveness of our adaptive EE-PBPAIR by updating EIR, we model

a dynamic network and compare adaptive EE-PBPAIR to static EE-PBPAIR (i.e.,

EE-PBPAIR with a fixed EIR). For this experiment, PLR begins with 20% and de-

creases by 5% every 20 runs and after 5% PLR it increases by 5% until it reaches

15%. Each run captures 300 frames of video encoding. The horizontal axis in Fig. 7

represents this scenario with varying PLR. The quality constraint is set to 29.6 dB

in PSNR, which is about 10% quality degradation from GOP-3 without any losses.

Static EE-PBPAIR encodes the video data with a fixed EIR = 30% (since 30%

EIR degrades the video quality significantly in some dynamic network situations as

shown in Fig. 7(a)) while adaptive EE-PBPAIR starting with 30% EIR and updates it

Error-Exploiting Video Encoder to Extend Energy/QoS Tradeoffs 33

Video Quality

25

26

27

28

29

30

31

32

20 15 10 5 10 15

Packet Loss Rate (%)

P
S

N
R

 (
d

B
)

Adaptive EE-PBPAIR Static EE-PBPAIR

(a) Adaptive EE-PBPAIR delivers better
video quality than static EE-PBPAIR

Adaptive EIR based on Feedback

0

5

10

15

20

25

30

35

20 15 10 5 10 15

Packet Loss Rate (%)

E
rr

o
r

In
je

c
ti

o
n

 R
a

te
 (

%
)

Adaptive EE-PBPAIR Static EE-PBPAIR

(b) Adaptive error injection rate according to
quality feedback

Fig. 7 Adaptive EE-PBPAIR Robust to Varying PLR under Dynamic Network Status

according to the quality feedback. Fig. 7(a) draws the PSNR values for adaptive EE-

PBPAIR in comparison to static EE-PBPAIR, and shows that the delivered quality

of adaptive EE-PBPAIR is consistently better than that of static EE-PBPAIR. EE-

PBPAIR adapts the EIR according to the feedback with respect to the video quality

as shown in Fig. 7(b). In conclusion, this EIR adaptivity with EE-PBPAIR adjusts

the quality of service based on the feedback for mobile video applications in dis-

tributed embedded systems while minimizing the energy consumption.

5 Summary and Future Work
Mobile video applications pose significant challenges for battery-constrained em-

bedded systems due to high processing power for compression algorithms and trans-

mission of a large volume of video data. Fortunately, video applications tolerate er-

rors inherently, and we exploit this error tolerance of video data for the purpose of

the energy savings. Active error exploitation – – intentional frame dropping together

with error-resilient video encoding – – can achieve significant energy gains while

ensuring the video quality. We present a new approach that injects errors intention-

ally to balance the dual goals of energy efficiency and satisfactory QoS.

In this paper, we demonstrated our approach in two phases for video confer-

encing applications running on resource-limited mobile systems. First we presented

EE-PBPAIR that combines an error-resilient video encoder (PBPAIR) with inten-

tional frame dropping to significantly reduce the energy consumption for the entire

encoding-decoding path of the video conferencing application. Our experiments

also demonstrated that the active error exploitation of EE-PBPAIR allows system

designers to consider larger tradeoff spaces than previous approaches: GOP-K and

PBPAIR. Further, we proposed an adaptive EE-PBPAIR by controlling a new knob,

error-injection rate (EIR), in order to satisfy the delivered quality based on the feed-

back under the dynamic network status.

Our future work includes intelligent frame dropping techniques for further energy

reduction with minimal quality degradation. We also plan to extend active error ex-

ploitation to the system level combined with error-aware architectures and network

protocols to maximize the energy reduction for distributed embedded systems.

34 Kyoungwoo Lee, Minyoung Kim, Nikil Dutt, and Nalini Venkatasubramanian

References

1. Liang Cheng and Magda El Zarki. An adaptive error resilient video encoder. In SPIE Visual
Communication and Image Processing, July 2003.

2. Liang Cheng and Magda El Zarki. PGOP: An error resilient techniques for low bit rate and
low latency video communications. In Picture Coding Symposium (PCS), Dec 2004.

3. Y. Eisenberg, C. Luna, T. Pappas, R. Berry, and A. Katsaggelos. Joint source coding and
transmission power management for energy efficient wireless video communications. IEEE
Trans. Circuits Syst. Video Technology, 12:411–424, 2002.

4. L. Guo, X. Ding, H. Wang, Q. Li, S. Chen, and X. Zhang. Exploiting idle communication
power to improve wireless network performance and energy efficiency. In IEEE International
Conference on Computer and Communications (INFOCOM), pages 1–12, April 2006.

5. Al Harris, Cigdem Sengul, Robin Kravets, and Prashant Ratanchandani. Energy-efficient mul-
timedia communications in lossy multi-hop wireless networks. IFIP Mobile and Wireless
Communication Networks, 162:461–472, 2005.

6. Intel Corporation, http://www.intel.com/. Intel PXA255(R) Processor: Developer’s Manual.
7. ITU-T. H.263 Draft: Video Coding for Low Bitrate Communication, May 1996.
8. Yu Jiao and Ali R. Hurson. Adaptive power management for mobile agent-based information

retrieval. In IEEE Advanced Information Networking and Applications (AINA), pages 675–
680, March 2005.

9. M. Kim, H. Oh, N. Dutt, A. Nicolau, and N. Venkatasubramanian. PBPAIR: An energy-
efficient error-resilient encoding using probability based power aware intra refresh. ACM
SIGMOBILE Mobile Computing and Communications Review, 10:58–69, July 2006.

10. Kyoungwoo Lee, Minyoung Kim, Nikil Dutt, and Nalini Venkatasubramanian, Tech Rep.
(http://www.ics.uci.edu/∼kyoungwl/eepbpair/). Adaptive EE-PBPAIR: A Novel Error-
Exploiting Video Encoder Incorporating End-to-End QoS Feedback, Dec 2007.

11. Jens Meggers, Gregor Bautz, and Anthony Sang-Bum Park. Providing video conferencing for
the mobile user. In IEEE Conference on Local Computer Networks, page 526, March 1996.

12. S. Mohapatra, R. Cornea, H. Oh, K. Lee, M. Kim, N. Dutt, R. Gupta, A. Nicolau, S. Shukla,
and N. Venkatasubramanian. A cross-layer approach for power-performance optimization in
distributed mobile systems. In Next Generation Software Program in conjunction with IPDPS,
page 218.1, April 2005.

13. NS2. Network Simulation version 2, http://www.isi.edu/nsnam/ns/.
14. Clark N. Taylor, Sujit Dey, and Debashis Panigrahi. Energy/latency/image quality tradeoffs in

enabling mobile multimedia communication. In Proc. of Software Radio: Technologies and
Services, pages 55–66. Springer Verlag, Jan 2001.

15. Y. Wang, S. Wenger, J. Wen, and A. K. Katsaggelos. Review of error resilient coding tech-
niques for real-time video communications. IEEE Signal Processing Magazine, 17:61–82,
July 2000.

16. S. Worrall, A. Sadka, P. Sweeney, and A. Kondoz. Motion adaptive error resilient encoding
for mpeg-4. In IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), volume 3, May 2001.

17. Wanghong Yuan, Klara Nahrstedt, Sarita V. Adve, Douglas L. Jones, and Robin H. Kravets.
Design and evaluation of a cross-layer adaptation framework for mobile multimedia systems.
In Proceedings of SPIE/ACM Multimedia Computing and Networking Conference (MMCN),
January 2003.

18. Rui Zhang, Shankar L. Regunathan, and Kenneth Rose. Video coding with optimal inter/intra-
model switching for packet loss resilience. IEEE Journal on Selected Areas in Communica-
tions, 18(6):966–976, June 2000.

Specification-based Verification of Embedded
Systems by Automated Test Case Generation

Christoph M. Kirchsteiger, Christoph Trummer, Christian Steger, Reinhold Weiss,
and Markus Pistauer

Abstract It is time and resource intensive to derive test cases manually from the re-
quirements specification to fully verify that the embedded system design fulfills its
specification. However, automatic parsing to generate test cases is often not possible
due to the informal, non-machine readable structure of the specification document.
Formal specification languages would ease the parsing process, however they are
difficult to use and rarely accepted. A promising trade-off are semi-formal specifi-
cation languages, which are both easy-to-parse and easy-to-use.
This paper presents a novel approach developed in the SIMBA1 project to tightly
integrate a semi-formal requirements specification document into the design flow
of embedded system designs. It considers the specification as a series of semi-
formal textual use cases and automatically generates specification-based SystemC
test cases. During a simulation with the System-under-Verification (SuV) the test
cases are executed to determine whether the SuV fulfills the specification. A demon-
stration is given by a case study of an RFID controller. It shows that errors in the
specification and discrepancies between the design and its specification are detected.

Christoph M. Kirchsteiger · Christoph Trummer · Christian Steger · Reinhold Weiss
Institute for Technical Informatics, Graz University of Technology, Inffeldgasse 16/1, 8010 Graz,
Austria
e-mail: (c.kirchsteiger, trummer, steger, rweiss)@tugraz.at

Markus Pistauer
CISC Semiconductor Design & Consulting GmbH, Lakeside B07, 9020 Klagenfurt, Austria
e-mail: m.pistauer@cisc.at

1 This project has been funded by the Austrian Federal Ministry for Transport, Innovation, and
Technology under the FFG contract FFG 812424

Please use the following format when citing this chapter:

Kirchsteiger, C.M., et al., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded
Systems: Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 35–44.

36 C.M. Kirchsteiger, C. Trummer, C. Steger, R. Weiss, M. Pistauer

1 Introduction

In today’s design of embedded systems, 70% of the entire design effort is spent on
functional verification. Functional verification is mainly driven by finding adequate
test cases to verify that the modeled system behaves according to its specification
[21]. Clearly, deriving test cases manually by reading the large system specification
document is very time and resource intensive and error-prone. On the other hand,
it is infeasible to perform this task automatically due to the informal non-machine
readable structure of the specification.
The approach presented here focuses on semi-formal description formats to spec-
ify requirements. A very promising and well-known semi-formal specification style
are textual use cases [4]. Although they are similar to graphical UML use cases
enhanced by UML sequence diagrams, they can be extended much more easily
to cover additional domain-specific information (e.g. by inserting additional fields
for non-functional requirements). Textual use cases are both widely accepted to
communicate with a customer and suitable for automatic post-processing. They
define the interaction and the behavior of a system under certain conditions (pre-
/postconditions, trigger) as a sequence of interaction steps with the environment
(=actors). Their structure is formal, table-based and composed of several fields for
the name, the pre-/postconditions and the interaction scenarios. However, within
each field the description is entirely informal. Thus, textual use cases are similar to
natural language but used in a structured way, which makes them easy-to-learn for
stakeholders from various domains.
A common textual use case description contains the following fields:

• Actor (communicates with the specified system)
• Pre-/postcondition and trigger
• Main success scenario (i.e. main interaction sequence)
• Extensions (i.e. alternative flows to the main scenario)

In this paper, we propose a novel design methodology (see Fig. 1) for the
specification-based functional verification of embedded system models by simu-
lation. We use simulation for verification without being concerned with the state-
space explosion problem as in static verification techniques. The main steps of our
approach as shown in Fig. 1 are highly automated and encompass both the error-
correction of the original specification document and the functional verification of
the system model. The generated test cases are based upon the SystemC Verification
Library (SCV) [20] and can be used to verify both transaction-level models and RTL
hardware designs [18].
The remainder of this paper is organized as follows: We start with an overview of
related work in section 2. In section 3 we present our methodology and describe its
implementation in section 4. Section 5 provides a case study of an Radio Frequency
Identification controller (=RFID tag) to present the applicability of our methodology
and its results. Finally we give a conclusion and list further work in section 6.

Specification-based Verification by Automated Test Generation 37

Fig. 1 Novel highly automated approach from textual use cases to a SystemC testbench for func-
tional verification.

2 Related Work

Test case generation from the specification has been widely studied in the research
community. Most of them, like [24], [13] and [1] favor formal specification lan-
guages as UML or SDL. However, in the hardware domain, which constitutes an
important portion of embedded systems, most of the designs are specified in a
document-based way. UML and other formal specification languages are hardly
used and are considered as a large burden, which confronts time-to-market. Al-
though these specification formats are unambiguous, precise and consistent, it is
very difficult for stakeholders from various domains, who specify requirements, to
get familiar with these formats. In contrast, our approach is based on semi-formal
textual use case-based descriptions as defined in [4]. They are both widely accepted
and easy-to-use by stakeholders and suitable for automatic post-processing.
There are a number of approaches, which are dealing with textual use case-based
descriptions for test case generation. Most of them, like [9] and [10] focus on the for-
mal transformation of use cases to UML state, message sequence or activity charts,
which are then used to generate the test cases. Whereas, the automatic test case gen-
eration from UML charts is widely studied in the research community [16], [15],

SystemC Testbench

Generator

Invalid

Grammar

Check
Response

Generate
Stimuli

System-under-

Verification

Functional

Verification

by

Simulation

Determine the

type of each

Term

Check grammar

structure

Remove

ambiguity terms

Lexicon

(Terms,

Types)

Grammar User

Interaction

Unknown

Terms

Requirements

Engineering

……...

……...

……...

……...Specify Use

Cases Use Case

Specification

Corrected Specification

User

(Stakeholder)

Parser

38 C.M. Kirchsteiger, C. Trummer, C. Steger, R. Weiss, M. Pistauer

[11] the formal transformation of the use cases to UML charts, apart from the ap-
proaches stated below, is usually done by hand. However, this requires a lot of in-
teraction effort since the number of use cases can be very large. Our work resolves
this issue by generating the test cases directly from the use case specification with a
high degree of automation and without the need for a transformation to UML charts.
Significant approaches related to our work are [22], [5], [3] and [7]. In [22] and [7]
the use case specification of a computer system is used to automatically generate
test cases. However, only the first step consisting of transforming the use cases to
UML activity diagrams is described. Nevertheless, as described in [3], the gener-
ated activity diagrams lack relevant information on the used message types and the
connection to the SuV’s interface, which is required to derive the test cases automat-
ically from the diagrams. The same is true for [5], which requires the test designer
to specify the test purpose of each test he wants to execute. In contrast, our approach
automatically generates a verification environment consisting of stimuli generation
and response checking and randomly selects and executes the test cases.

3 Novel Approach

We propose a novel specification-based functional verification by simulation method-
ology that aims for:

• Check the specification to remove ambiguities and incorrect grammar.
• Automate the functional test case generation from textual use case specifications.
• Provide a functional verification by executing the test cases to determine the

discrepancies between the embedded system model and its specification.

As shown in Fig. 1 our approach starts with a semi-formal use case specification of
the System-under-Verification (SuV). The common textual use case descriptions [4]
are extended by additional fields to cover constants, like message types or time de-
lay constants. During the parsing of the use case specification we deal with typical
natural language issues [8]. Therefore, we define a grammar and a lexical subset of
the natural language to be used for specifying the use cases. This is done in collabo-
ration with our industry partner, who has strong experience with common grammar
structures and terms used for the specification. A list of guidelines is provided to
keep the stakeholder to the given grammar structure and focus on terms from the
lexical subset. It is not mandatory for the stakeholder to stick to these guidelines,
although it decreases the required user interaction significantly. The interactions are
also decreasing with the number of processed requirements as in the case of a miss-
ing term, which requires the user to specify the type of this unknown term. This
decision is remembered the next time this term is analyzed without the need for an
interaction by the user. After the parsing, the specification document is corrected
and it is used as the input for the SystemC testbench generator, which generates
the specification-based test cases. During a SystemC simulation these test cases are
applied to the SuV to check if it corresponds to the specification. Output messages

Specification-based Verification by Automated Test Generation 39

Fig. 2 Our implementation uses JAXB to extract data from the specification. The CUP Parser
invokes the LR Parser and JFLEX to generate a syntax tree [2]. The semantic analyzer uses the
syntax tree to provide the input for the test case generator.

convey information on the test progress, the test coverage as well as the test results
to inform the verification engineer on-line about the current status of the simulation-
based verification.

JAXB

Automatic Verification Platform Generator

Lexicon

(terms,

types)

Generates a SystemC Testbench

……...

……...

……...

……...

Use case-based

Specification

Transforms XML Specification into

Java Class instances

JFLEX

Parses each

term to identify

its type

LR Parser

Check

Grammar

Semantic Analyzer

Determines the meaning of each term

Apply test cases

randomly to the SuV

Specification

checking

CUP Parser

Syntax Tree

InvokeInvoke

Grammar

(valid

syntax)

Generate

SystemC

Co-simulation

Error-corrected

XML specification

40 C.M. Kirchsteiger, C. Trummer, C. Steger, R. Weiss, M. Pistauer

Fig. 3 Proposed algorithm for the random selection of the generated test cases during a SystemC
simulation.

4 Implementation

Figure 2 shows the implementation of our approach. JAXB [23] is used to generate
Java classes and fills the instances of these classes with information from the XML-
based use case specification. These instances are analyzed by the Java CUP parser
[12], which invokes JFlex [17] to identify the type of each term. The CUP parser
uses an LR-Parser [19] to check the grammar and generates a syntax tree [2] from
each phrase stored in the use case instances. This is used by the semantic analyzer
to determine the meaning of each term and to generate the error-corrected XML
specification. Finally, the Automatic Verification Platform Generator uses this XML
specification to generate the SystemC testbench.

The SystemC testbench selects and executes SystemC test cases during a simu-
lation and consists of the two threads: random test case selection and test execution.
The algorithm of the random test case selection thread is shown in Fig. 3. The en-
tire process in Fig. 3 is reiterated until each use case has been selected by a user-
specified number of times or the simulation is stopped by the verification engineer.
In each iteration our algorithm uses SCV constructs to randomly select a use case
from the list of use cases. This list is generated each time the Automatic Verifica-
tion Platform Generator reads the error-corrected XML specification input file and
generates the SystemC testbench module. Each use case may contain a list of pre-
decessor use cases. These are defined in the use case’s precondition statement and
are executed before the current use case is processed. Each use case contains a list

TC1 TC2 TC3 ... TCn-1 TCn

UC1 UC3 ... UCn-1UC2 UCn

TC1 TC2 ... TCn-1TC3 TCn

Random

Selection (SCV)

Random

Selection (SCV)

TC3
Execute

Testcase

Select

Use CaseStart with 1st

element

Process

Testcase List

Select

Alternative

Testcase

Execute

Testcase

Stop

Simulation

Execute pre-

condition use

cases

Specification-based Verification by Automated Test Generation 41

of test cases, which correspond to the steps in its scenarios. Each test case may also
contain a list of alternative test cases specified in the extension scenarios. When a
use case is processed our algorithm goes through its test cases sequentially starting
at the first element in the list. For each test case it determines if the test case has a
list of alternative test cases. If so, it uses the SCV constructs to randomly select a
test case from the list for execution. Otherwise, the current test case is selected and
executed by the test execution thread, which generates the stimuli, estimates and
stores the SuV’s internal state, checks the SuV response and prints the test case’s
name and status for verification reporting. The test execution thread is a verifica-
tion state machine generated from the input XML use case specification as shown
in Fig. 4. For each step in the use case scenario, which corresponds to a test case,
the verification state machine contains a case block to execute this step. The case
block SET UP TAG 1 RECEIVES ACTION in Fig. 4 corresponds to the specified
use case step

Tag receives Query Message with matching SL Flag

from Fig. 5 and generates the corresponding stimuli to apply this step to the
SuV. The case block SET UP TAG 10 TRANSMITS ACTION checks the system re-
sponse at step

Tag transmits 16bit Random Number

from Fig. 5. The functions marked as grey-tone are the corresponding transactor
functions. A transactor component is also automatically generated by our method-
ology and is inserted between the SystemC testbench module and the SuV to map
the test cases to the SuV. Since the interface of the SuV can change the transactor
is adapted by the verification engineer to connect it to the interface of the SuV. The
mapping of the transaction-level test cases to the SuV’s interface would go beyond
the topic of this paper and is not explained here any further.

5 A Case Study of an Radio-Frequency Identification Controller

To demonstrate our methodology we have implemented it in the HW/SW co-design
tool SyAD R© (System Architect Designer) [14]. SyAD R© enables the development of
system-level HW/SW co-designs and supports a multi-language and multi-level co-
simulation framework of SystemC, VHDL, VHDL-AMS and MATLAB Simulink.
As a case study we have considered a use case-based specification of an Radio-
Frequency Identification controller (= RFID tag) state machine provided by our in-
dustrial cooperation partner. The specification document is derived from the con-
troller state diagram specified in the EPCGlobal Class-1 Generation-2 UHF RFID
protocol for communications [6]. The use case-based specification document cov-
ers the entire tag state diagram (see Fig. 6.19. in [6]) and encompasses 53 use case
scenarios. Fig. 5 shows a small excerpt from the use case-based specification docu-
ment. We applied our methodology implemented in SyAD R© to the entire use case

42 C.M. Kirchsteiger, C. Trummer, C. Steger, R. Weiss, M. Pistauer

Fig. 4 Automatically generated source code of the test execution thread.

Fig. 5 Use case derived from the protocol specification of an RFID controller state machine.

specification and discovered 6 syntax errors (due to invalid grammar and missing
verbs and articles) and added 8 unknown terms to the lexicon during the parsing
steps. In a next step our Automatic Verification Platform Generator generated the
SystemC testbench module consisting of 131 test cases derived from the use case
specification document. Fig. 6 demonstrates the results of the simulation of the Sys-
temC testbench with the SuV for 5, 10, 15 and 20 iterations of the SystemC test case
selection algorithm from Fig. 3. Use case 1 (UC 1) is executed most of all, since it is
in the precondition list of all other use cases. In contrast, UC 5 is less often executed
since it does not occur in the precondition list of any other use case. The ratio of
executed use case scenarios to the total number of use case scenarios specifies the
covered amount of the specification by the simulated test cases. The left diagram in
Fig. 3 shows a comparison of the number of identified errors and the verified portion
of the specification for 5, 10, 15 and 20 iterations. A 80% functional coverage de-

int testbench::test_execution(){

switch(state){

case SET_UP_TAG_1_RECEIVES_ACTION :

 transmit_Message->set_value(QUERY_MESSAGE, SL_FLAG);

send_to_DUT(transmit_Message);

 break;

 case …

case SET_UP_TAG_10_TRANSMITS_ACTION :

 message *received_message;

receive_from_DUT(received_message, PC_EPC_CRC_MSG);

 if(check_message(received_message))

 return TB_PASSED;

 else

 return TB_FAILED;

 break;

 }

}

Name: Set up Tag
Description: Use case accessed when tag enters the Reader field.
Scope: UHF RFID Tag (=Tag).
Primary actor: Interrogator (=Reader)
Precondition/Trigger: Tag (re)-enters the Reader Field
Main Success Scenario:

1. Tag receives Query command with matching SL Flag from Reader
...

10. Tag transmits 16bit Random number
11. Tag exits use case and goes to “Reply Tag” Use Case

Alternate Flows:
1a. Tag receives Select command from Reader
...

LocNonfunctional Requirements:
Timing Constraints: Step 1 until step 11 shall be done within t1.

Specification-based Verification by Automated Test Generation 43

Fig. 6 Simulation results for 5, 10, 15 and 20 iterations of the proposed test case selection algo-
rithm applied to the RFID controller model.

tects 14 errors and requires 20 iterations of the test case selection algorithm, which
results in more than 600 executed tests as illustrated in Fig. 3

6 Conclusion and Further Work

In this paper we presented a novel functional verification methodology for embed-
ded system designs. The methodology supports both the correction of errors in the
specification document and the automated test case generation from the specifica-
tion. The test cases are used to verify whether the system model fulfills its specifi-
cation (=functional verification) and close the gap between the specification and the
design.
Our approach focuses on textual case-based specifications, which are suitable for
black-box test case generation. We used a case study based on the semi-formal spec-
ification of a higher class RFID controller to demonstrate and prove our method-
ology. We showed that our methodology can be used to correct the specification
document and to automatically generate SystemC test cases, which are executed
randomly during simulation to determine the discrepancies between the design and
its specification. As a further step we plan to improve the verification reporting by
introducing functional coverage monitors into our design flow. This provides on-line
information on how much functionality has been verified.

0

100

200

300

400

500

600

1 5 10 15 20

Number of iterations

N
u

m
b

e
r
 o

f
e

x
e

c
u

ti
o

n
s

UC1 executions

UC2 executions

UC3 executions

UC4 executions

UC5 executions

executed tests

27,20

55,98

69,74

74,61

80,04

4

8
11

13 14

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

1 5 10 15 20

Number of iterations

V
e

r
if

ie
d

 a
m

o
u

n
t

o
f

th
e

 s
p

e
c

if
ic

a
ti

o
n

 (
%

)

N
u

m
b

e
r
 o

f
d

e
te

c
te

d
 e

r
r
o

r
s

% Covered functionality Detected errors

44 C.M. Kirchsteiger, C. Trummer, C. Steger, R. Weiss, M. Pistauer

References

1. J.R. Abrial. The B-book : assigning programs to meanings. Cambridge University Press,
August 1996.

2. S. Bird, E. Klein, and E. Loper. Introduction to Natural Language Processing. 2001.
3. L.C Briand and Y. Labiche. A uml-based approach to system testing. In Proceedings of

the 4th International Conference on The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, pages 194–208, London, UK, 2001. Springer-Verlag.

4. A. Cockburn. Writing Effective Use Cases. Addison-Wesley Professional, 2001.
5. A.L.L. de Figueiredo, W.L. Andrade, and P.D.L. Machado. Generating interaction test cases

for mobile phone systems from use case specifications. SIGSOFT Softw. Eng. Notes, 31(6):1–
10, 2006.

6. EPCGlobal. EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Pro-
tocol for Communications at 860 MHz 960 MHz, 1.0.9.

7. A. Fantechi, S. Gnesi, G. Lami, and A. Maccari. Application of Linguistic Techniques for Use
Case Analysis. In Requirements Engineering, 2002. Proceedings. IEEE Joint International
Conference on, pages 157–164, 9-13 Sept. 2002.

8. Centre for Language Technology. Controlled Natural Languages, 2007.
9. M. Friske and H. Schlingloff. Von use cases zu test cases: Eine systematische vorgehensweise.

2005.
10. P. Fröhlich and J. Link. Automated test case generation from dynamic models. In ECOOP

’00: Proceedings of the 14th European Conference on Object-Oriented Programming, pages
472–492, London, UK, 2000. Springer-Verlag.

11. J. Hartmann, C. Imoberdorf, and M. Meisinger. Uml-based integration testing. In ISSTA ’00:
Proceedings of the 2000 ACM SIGSOFT international symposium on Software testing and
analysis, pages 60–70, New York, NY, USA, 2000. ACM.

12. S. Hudson. Cup - lalr parser generator for java, 2007.
13. Y. JinShan, L. Tun, and T. QingPing. The Use of UML Sequence Diagram for System-on-Chip

System Level Transaction-based Functional Verification. In Intelligent Control and Automa-
tion, 2006. WCICA 2006. The Sixth World Congress on, volume 2, pages 6173–6177, 21-23
June 2006.

14. S. Kajtazovic, C. Steger, A. Schuhai, and M. Pistauer. Automatic generation of a verifica-
tion platform for heterogeneous system designs. In Advances in Design and Specification
Languages for SoCs - Selected Contributions from FDL’05, 2005.

15. S. Kansomkeat and W. Rivepiboon. Automated-generating test case using uml statechart
diagrams. In SAICSIT ’03: Proceedings of the 2003 annual research conference of the South
African institute of computer scientists and information technologists on Enablement through
technology, pages 296–300, , Republic of South Africa, 2003. South African Institute for
Computer Scientists and Information Technologists.

16. Y.G. Kim, H.S. Hong, D.H. Bae, and S.D. Cha. Test cases generation from uml state diagrams.
Software, IEE Proceedings -, 146(4):187–192, Aug 1999.

17. G. Klein. Jflex - the fast scanner generator for java, 2007.
18. Cadence Labs. The Transaction-Based Verification Methodology. Technical report, 2000.
19. Naumann and B.G. Lang. Parsing. 1994.
20. C. Norris and S. Swan. A tutorial introduction on the new systemc verification standard.

Technical report, 2003.
21. A. Piziali. Functional Verification Coverage Measurement and Analysis. Kluwer Academic

Publishers, 2004.
22. M. Riebisch and M. Hubner. Traceability-driven Model Refinement for Test Case Genera-

tion. In Engineering of Computer-Based Systems, 2005. ECBS ’05. 12th IEEE International
Conference and Workshops on the, pages 113–120, 4-7 April 2005.

23. Sun. Java architecture for xml binding (jaxb), 2003.
24. Q. Zhu, R. Oishi, T. Hasenawa, and T. Nakata. System-On-Chip Validation using UML and

CWL. In Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 2004.
International Conference on, pages 92–97, 2004.

Analysis of Periodic Clock Relations in
Polychronous Systems

Hugo Metivier, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

Abstract The polychronous (synchronous, multiclocked) language Signal is used
for the design and analysis of reactive systems. For the purpose of modeling event-
driven systems, we consider an extension of the polychronous model of computation
of Signal with periodic equations denoted by ultimately periodic infinite words.
These equations express periodic constraints on the signals of programs, that can be
used to enrich the existing clock calculus of Signal. Thanks to this more powerful
clock calculus, the communications between processes using periodic equations can
be analysed to guarantee their correctness. In particular, the maximal size of buffers
is formally evaluated. We illustrate the design of so-defined periodic systems using
a 4-stroke engine example.

1 Introduction

While synchronous programming has extensively been applied to the design of
control-intensive software for event-driven embedded systems [3], recent work [11,
5] has investigated extensions to symbolic calculus for synchrony in the aim of
analyzing periodic systems and communications between them. Synchronous lan-
guages are appropriate specification formalisms to address the design of such ar-
chitectures, as the otherwise symbolic model of time they support can be equipped
with ad-hoc program analysis techniques to perform needed timing evaluation. As
an example, polychrony, the synchronous multi-clocked model of computation of
the data-flow specification formalism Signal, is dedicated to the specification of
concurrent event-driven embedded software and for the main purpose of architec-
ture exploration. Polychrony provides a discrete and partially ordered model of time
that differs from the classical synchronous hypothesis where time is abstracted by
totally ordered symbolic clocks. For the purpose of modeling periodic systems, we

H. Metivier (University of Rennes) · J-P. Talpin · T. Gautier · P. Le Guernic (INRIA)
Campus de Beaulieu, 35 042 Rennes Cedex France
e-mail: firstname.lastname@irisa.fr

Please use the following format when citing this chapter:

Metivier, H., et al., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded Systems:
Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 45–56.

46 Hugo Metivier, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

consider an extension of the polychronous MoC with periodic clocks denoted by
ultimately periodic infinite words. This defines a compositional specification struc-
ture to express periodic relations between signals. Applications are the design of
periodic systems and the analysis of communication resources.

Related work Many approaches have been investigated for the design of hybrid
hardware/software, event-driven/time-triggered,synchronous/asynchronous, embed-
ded systems. Most of them are based on the principles of process networks and
inherit from the pioneering work of Kahn [7]. Many examples could be cited, the
Ptolemy [4] project, the Yapi [8] project, etc. While symbolic reasoning on pro-
cess networks has essentially been developed for the purpose of embedded, control-
dominated, software design and in the context of synchronous programming lan-
guages [3], such as Esterel, Lustre and Signal, analytical reasoning has mainly been
studied in the context of high-performance, data-dominated systems.

Some approaches have arisen to combine concepts of both domains. 1) The first
one is, to our knowledge, the work of Smarandache [11]. It aims at combining
the multi-clocked synchronous model of computation of the language Signal with
a topological model of the Alpha specification formalism [6]. Alpha manipulates
convex polyhedral domains to describe high-performance, massively parallel algo-
rithms over multi-dimensional data. Signal-Alpha [11] proposes a calculus of affine
clock relations, associating symbolic signal clocks with affine functions: two pe-
riodic signals x,y are said in (n,m,q− p)-affine relation iff their respective clocks
x̂, ŷ can be expressed as functions x̂ = {n.t + p | t ∈ ẑ} and ŷ = {m.t + q |t ∈ ẑ} of
a common reference of discrete time ẑ (m,n, p,q are integers). This yields a very
expressive calculus for the specification and the analysis of time-triggered systems,
while in fact most of the decidable and algorithmically affordable analysis concerns
(1,m,n)-affine relations. 2) More recently, Cohen et al. [5] propose an algebra
of ultimately periodic clocks to interpret synchronization in the synchronous lan-
guage Lucid-synchrone. This yields the capability to model process networks: syn-
chronous functions networked by bounded-buffering communication mechanisms.
The algebra of periodic clock relations under consideration consists of associating
a signal with a period described by a binary word (e.g. (01)). In turn, this defines a
rich algebra in which a clock is itself the generator of an ideal consisting of any pos-
sible stretch of the generator (e.g. (0101), etc.). 3) The UML profile for Modeling
and Analysis of Real-Time and Embedded systems (MARTE [1]) provides a general
model of time in different aspects : physical/logical, dense/discrete, single/multiple.
It offers basic operators and relations to combine timed events and clocks : subclock-
ing, periodicity, etc. The calculus we propose could be a way of solving MARTE
clock relations (in particular, periodic ones) in the case of discrete multiple time.

Contribution The results described in this paper can be used for the design and
analysis of periodic systems specified using the polychronous model. Our approach
consists first in the design of a clock calculus that balances the tradeoff between de-
cidability and compositionality pointed out earlier [11]. Just as for the affine clock
relations, we define a calculus of periodic clock relations to support the composi-
tional modeling of multi-rate systems. Like in [5], periods are expressed here using

Analysis of Periodic Clock Relations in Polychronous Systems 47

ultimately periodic infinite words. However, they are expressed using ternary logic
instead of Boolean logic. The ternary logic allows to express periodicity on the val-
ues of boolean signals moreover periodicity on the presence/absence of signals. Our
calculus corresponds to part of the domain of (1,m,n)-affine relations in [11], where
most analyses are decidable and recasts these results in an extension of the algebra
of [5] with ternary logic. Based on that algebra, we define a calculus of periodic
clock relations to compositionally reason about real-time relations in multi-clocked
and multi-rate systems. We provide a new Signal equation that allows the design of
periodic processes. The clock calculus of Signal is extended to take it into account
and an analysis can be applied on periodic processes to guarantee the communica-
tions using bounded buffers. The analysis gives as result the size of needed buffers.

Plan Section 2 gives a presentation of the polychronous language Signal. Sec-
tion 3 presents our algebra of ultimately periodic words. Based on that calculus,
section 4 defines a new Signal equation to write periodic processes using ultimately
periodic infinite words; we illustrate this extension with a model of a 4-stroke en-
gine. Section 5 describes the clock relation inference of Signal and its extension.
Section 6 presents the analysis of periodic processes to guarantee communications
using bounded buffers and the analysis is applied on the 4-stroke engine example.

2 Polychronous model of computation

We start with a definition of some required elements of the polychronous model of
computation [9]. The set of tags T is the discrete time used in Signal and is partially
ordered with the relation t ≤ u. It stipulates that the tag t occurs before u. A chain
C ∈ C is a subset of T which is totally ordered, predC(t) denotes the immediate
predecessor tag in C. Signals, behaviors and processes are defined as follows :

• a signal s ∈ S = C → V is a function from a chain of tags to a set of values,
• a behavior b ∈ B = X → S is a function from a set of names x to signals, it

represents a possible execution of a program.
• a process p ∈ P is a set of behaviors that have the same domain. This set repre-

sents all the possible executions of the program.

The set of possible values V is defined as union of sets of boolean values, integer
values, etc. The type of a signal is that of its values. Clock signals take their values in
the subset of VB reduced to the { true } singleton. Type constraints are not described
in this paper. We write tags(s) for the chain of tags of a signal s and min(tags(s))
for its first tag. We write b|X for the projection of a behavior b on a set of names X .

A Signal process consists of the synchronous composition of equations on sig-
nals. A signal x is an infinite flow of values that is discretely sampled according to
the pace of its clock, noted x̂. An equation partially relates signals with respect to an
abstract timing model.

P ::= x = f(y,z) |x = y pre v |x = y when z |x = y default z |P ||P

48 Hugo Metivier, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

It is allowed to substitute a signal name by its definition to write concise processes.
For example, x = (y �= z) ||z = y pre true may be written as x = (y �= (y pre true)).
Semantics of the Signal equations In the functional equation x = f(y,z), the sig-
nals x,y and z are assumed to be synchronous, (their sets of tags are equal). For each
tag the signals are present, x holds the result of the function f applied on the values
of y and z. f can be an arithmetic or boolean classical function (+, �=, or . . .).

The delay equation x = y pre v enforces the signals x and y to be synchronous
too. The value of the signal x at a given tag is defined by the value of y from the
previous tag in the chain. For its first tag, x holds the value v.

The sampling equation x = y when z defines x by y when z is true. It means that
the output signal x is present and takes the value of y iff both input signals y and z
are present, and z holds the value true. In the following definition, the notation [z]
represents the clock which is true when z is present and true, and absent otherwise.

The merge equation x = y default z defines x by y when y is present and by z
otherwise. The signal x is present iff either of the signals y or z is present.

The synchronous composition P ||Q is defined by the simultaneous solution of the
equations P and Q at all times. If we note vars(P) the domain of a process P, it can be
defined by the union b�c of behaviors that match on the interface vars(P)∩vars(Q)
between P and Q.

[[x = f(y, z)]] =
{

b ∈ B|x,y,z

∣∣∣∣tags(x) = tags(y) = tags(z),
∀t ∈ tags(x),b(x)(t) = f(b(y)(t),b(z)(t))

}

[[x = y pre v]] =
{

b ∈ B|x,y

∣∣∣∣tags(x) = tags(y) = C,b(x)(t) =
∣∣∣∣v if t = min(C)
b(y)(predC(t)) if t �= min(C)

}

[[x = y when z]] =
{

b ∈ B|x,y,z
∣∣tags(x) = tags(y)∩ tags([z]),∀t ∈ tags(x), b(x)(t) = b(y)(t)

}
[[x = y default z]] =

{
b ∈ B|x,y,z

∣∣∣∣ tags(x) = C
= tags(y)∪ tags(z) ,∀t ∈C,b(x)(t) =

∣∣∣∣ b(y)(t) if t ∈ tags(y)
b(z)(t) otherwise

}

[[P ||Q]] =
{

b� c
∣∣b ∈ [[P]], c ∈ [[Q]], b|vars(P)∩vars(Q) = c|vars(P)∩vars(Q)

}

3 An algebra of ultimately periodic infinite words

We now present an algebra of ultimately periodic infinite words used in our ex-
tension of Signal for the design and the analysis of periodic processes. We use the
three-value logic induced by Z/3Z to denote boolean or clock signals by using
atoms a ∈ Z/3Z = {-1,0,1}. The absence is denoted by 0, false by -1 and true by 1.
We introduce this algebra to represent periodicity over boolean and clock signals.

Ultimately periodic infinite words The ultimately periodic infinite words (called
words further) noted w or u(v) under consideration are composed of a prefix u ∈
(Z/3Z)∗ and a period v ∈ (Z/3Z)+.

W = {w = u(v) |u ∈ (Z/3Z)∗ and v ∈ (Z/3Z)+}

Analysis of Periodic Clock Relations in Polychronous Systems 49

A word u(v) represents the infinite sequence of atoms composed by the sequence
u followed by the sequence v repeated infinitely. Words that represent the same
sequence of atoms are equal. We now present a few required notations:

• |u| the length of a sequence u ∈ (Z/3Z)∗

• 〈u〉 the number of non-zero atoms of a sequence u ∈ (Z/3Z)∗

• wn the nth atom of a word w
• |w|an the number of atoms a in the nth first atoms of w
• w[n] the nth non-zero atom in the word w
• “.” the classical operation of concatenation.
• 〈w〉a

n the position of the nth atom a in the word w

i.e. 〈a.w〉a
1 = 1 〈b.w〉a

n =
(
〈w〉a

n + 1 if a �= b
〈w〉a

n−1 + 1 if a = b and n > 1

)

ex: 〈01(01-10)〉1
1 = 2 〈01(01-10)〉1

2 = 4 〈01(01-10)〉-1
2 = 9

Operations and operators The partial order w w′ stipulates that the nth atom in
w precedes the corresponding one in w′, for all non-zero atoms. w w′ means that
w′ is stretched variant of w, since the non-zero atoms occur in the same order.

∀n > 0,∀a �= 0,
w w′ ⇔ 〈w〉a

n ≤ 〈w′〉a
n

a.w@ b.w′ =
(

0.(a.w@ w′) if b �= 1
a.(w@ w′) if b = 1

)

We define the operator w@ w′ to resample a word w on an other one w′. The atoms of
w being placed in correspondence with the atoms 1 of w′, then the word w@ w′ has
the corresponding atom of w when w′ has the atom 1, and has the atom 0 otherwise.
The @ operator distributes the values of the first stream to the positions where the
second one holds the atom 1. This is an extension of the “w′ on w” operator of [5].
This definition yields that w w@ w′ for all words w,w′ and (w@ w′)n = 0 if w′

n �= 1
and w|w′|1n

if w′
n = 1.

Example 1. ∀w ∈ W, w@(1) = w and w@(0) = (0)

(0-11)@ 0(1-1110) = 0(00-11)
w′ 0 1 -1 1 1 0 1 -1 1 1 0 · · ·= 0(1-1110)
w 0 -1 1 0 -1 1 · · ·= (0-11)

w @w′ 0 0 0 -1 1 0 0 0 -1 1 0 · · ·= 0(00-110)

Remark 1. For any pair of words u(v) and x(y), it is always possible to build
equivalent representations u′(v′) = u(v) and x′(y′) = x(y) such that |u′| = |x′| and
|v′| = |y′| [5]. For example, 01(-11) and (-101) can be respectively rewritten as
01(-11-11-11) and -10(1-101-10). Such a rewriting is useful when pointwise oper-
ations have to be applied on words.

Synchronizable words

Definition 1. Two words w,w′ are said stretch-equivalent if ∀n > 0, w[n] = w′[n].

It means that the two stretch-equivalent words have the same order of non-zero
atoms. Obviously, any two words the atoms of which take their values in {0,1}
(called binary words) are stretch-equivalent.

In [5], it is shown that two binary words u(v),u′(v′) are synchronizable iff the
lengths of their periods (|v|,|v′|) and their numbers of presence (〈v〉,〈v′〉) match
〈v〉/|v| = 〈v′〉/|v′|. This extends to stretch-equivalent ternary words.

50 Hugo Metivier, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

Definition 2. Two stretch-equivalent ternary words w,w′ are said synchronizable,
written w ∼ w′, iff there exists d,d′ such that w 0d.w′ and w′ 0d′ .w.

The relation w 0d .w′ means that we can delay the atoms of w′ by d zero atoms so
that the nth non-zero atom of w precedes the nth non-zero atom of w′. Then w 0d.w′

(resp. w′ 0d′ .w) implies that the distance between the nth non-zero value of w and
the nth non-zero value of w′ is bounded by d (resp. d’). This definition will be used
to analyse the size of buffers required for communications (Section 6).

Property 1. Two stretch-equivalent words u(v) and u′(v′) are synchronizable iff
〈v〉/|v| = 〈v′〉/|v′| . (the proof is similar to that of [5]).

4 Periodic processes

Periodic sampling equation We introduce a new operator in Signal, noted @ ,
derived from the corresponding one defined on periodic words, in order to express
periodic relations. A periodic sampling equation x = w@ y relates two (clock or
boolean) signals x,y, with a word w. It defines x to hold the successive non-zero
atoms of w when y takes the value true. We note tx[n] for the nth tag of a signal x.

[[x = w@ y]] =
{

b ∈ B|x,y

∣∣∣∣t ∈ tags(x) ⇔∃n > 0, t = ty[n] and wn �= 0
∀n > 0, b(x)(tx[n]) = w[n]

}

Example 2. ∀w ∈ W,x = (1)@ y ⇒ x = [y], and x = (0)@ y ⇒ x is always absent.
Recall that [y] is a clock which is present iff the signal y is present and true.

x = 0(10-1)@ y
y 1 -1 1 1 1 -1 1 1 -1 1 · · ·

0(10-1) 0 1 0 -1 1 0 -1 · · ·
x 1 -1 1 -1 · · ·

Example 3. To outline the use of a periodic sampling equation in Signal, we consider
the specification of a one-place buffer which is constrained to behave as a mailbox
(every message has to be read once and only once before there is a new one). The
process buffer uses two subprocesses, alternate and current. The process alternate
stipulates that the signals x and y should have exclusive periods (01) and (10) with
respect to the clock c. The process current stores the value of an input signal y
and loads it into the output signal x upon request. The buffer has a main clock
equivalence class r̂ = c and two exclusive samples x̂ = (01)@c and ŷ = (10)@c.

x = buffer(y) def= (x = current(y,c) ||alternate(x,y,c))

alternate(x,y,c) def= (x̂ = (01)@ c || ŷ = (10)@ c)
x = current(y,c) def= (r = y default (r pre initValue) ||x = r when x̂ || r̂ = c)

Use case In a 4-stroke engine, each cylinder performs a cycle with four phases:
intake, compression, combustion and exhaust. During the intake phase, a blend of
fuel and air is put in the cylinder, the compression compresses this blend, the com-
bustion is the action of burning the blend because of an ignition and the exhaust

Analysis of Periodic Clock Relations in Polychronous Systems 51

evacuates the gas of the cylinder. To model this periodic system, like [2] we use a
clock clkSha f t which represents the rotation of the crankshaft. In figure 1, it appears
that the crankshaft turns 720◦ for each cycle of the engine.

0 intake 180
compression

360 combustion 540 exhaust 720 clkShaft

ignition time
calculus

MIAA
ignition

time interval
data

acquisition

startCalc resultCalc startData resultData

Fig. 1 4-stroke engine cycle for one cylinder

The date of ignition occurs during the ‘ignition time interval’ and must be com-
puted for each cycle of the engine for a better efficiency. This date depends on
several measures made during the combustion phase of the previous cycle. ‘Data
acquisition’ is the period where the measures are done and ‘ignition time calcu-
lus’ is the one where the ignition date is calculated. The Maximal Ignition Advance
Angle (MIAA) is the beginning of the ‘ignition time interval’.

The process oneCylinder represents the model of a cylinder in Signal using pe-
riodic sampling equations. The signal clkSha f t is a clock which is present each
time the crankshaft turns one degree. The clocks clkIntake, clkCompress, clkCom-
bust, clkExhaust represent the beginning of the four phases of the 4-stroke engine
(1). For example, the equation clkCompress = (018010539)@ clkSha f t constrains
clkCompress to be present when clkSha f t is present for the (181 modulo 720)th

times that correspond to a turn of 180◦ from each beginning of a cycle. The clock
clkMIAA corresponds to the MIAA.

We assume two external components represented by two processes: dataAcqui-
sition for the acquisition of the data (2) and ignitionTime for the computation of
the date of ignition (3). For each cycle, the beginning and the end of the running
of the two processes are constrained by the periodic clocks of the signals startData
and resultData for dataAcquisition and the signals startCalc and resultCalc for
ignitionTime.

The ignition must occur at the MIAA plus a number of degrees contained in the
result resultCalc of the process ignitionTime. The clock clkIgnition (4) is the result
of the process Ignition (5) that computes this date. A buffer is needed to delay the
acquisition of the data at the clock resultData to the use of this data at the clock

ˆstartCalc (in the next cycle of the engine). The management of the buffer to operate
this delay is shown in the global process: 4cylinderEngine. The model of a four
cylinder engine is a composition of four processes oneCylinder, the basic clocks of
which are ‘shifted’ (6): the first cylinder starts running at the first presence of the
clock clk of the crankshaft, the second cylinder starts with a delay of 180 degrees on
the clock clk, the third one with a delay of 360 degrees and the fourth one with a de-
lay of 540 degrees. The process bufferFIFO is a classical FIFO in which an element
is added when one of the signals d1,d2,d3 or d4 (corresponding to the respective
resultData signal of each cylinder) is present; an element is taken from the FIFO

52 Hugo Metivier, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

oneCylinder(clkSha f t, resultData, startCalc) def=⎛
⎝ clkIntake = (10719)@ clkSha f t ||clkCompress = (018010539)@ clkSha f t

||clkCombust = (036010359)@ clkSha f t ||clkExhaust = (054010179)@ clkSha f t
||clkMIAA = (033010389)@ clkSha f t

⎞
⎠(1)

||

(
resultData = dataAcquisition(startData)
|| ˆstartData = clkCombust || ˆresultData = (047010249)@ clkSha f t

)
(2)

||

(
resultCalc = ignitionTime(startCalc)
|| ˆstartCalc = 0720(10719)@ clkSha f t || ˆresultCalc = 0720(015010569)@ clkSha f t

)
(3)

|| (clkIgnition = Ignition(resultCalc,clkSha f t,clkMIAA)) (4)

clkIgnition = Ignition(resultCalc,clkSha f t,clkMIAA) def=⎛
⎜⎜⎜⎜⎜⎝

ignitionDelay = resultCalc default (ignitionDelay pre f irstIgnitionDate)
|| i = 0 when clkMIAA

default -1 when (zi == ignitionDelay)
default zi +1 when (zi �= -1)

|| zi = i pre -1 || î = clkSha f t
||clkIgnition = true when (i == ignitionDelay)

⎞
⎟⎟⎟⎟⎟⎠

(5)

4cylinderEngine(clk) def=

(6)

⎛
⎜⎜⎝

oneCylinder(clk,d1,c1)
||oneCylinder(0180(1)@ clk,d2,c2)
||oneCylinder(0360(1)@ clk,d3,c3)
||oneCylinder(0540(1)@ clk,d4,c4)

⎞
⎟⎟⎠ ||

⎛
⎜⎜⎝

add = d1 default d2 default d3 default d4
|| take= bufferFIFO(add)
||c1 = take when ĉ1 ||c2 = take when ĉ2
||c3 = take when ĉ3 ||c4 = take when ĉ4

⎞
⎟⎟⎠ (7)

when one of the signals c1,c2,c3 or c4 (corresponding to the respective startCalc)
is present (7). The analysis of the necessary size of this buffer is presented in Sec-
tion 6. The figure 2 shows a chronogram of this model.

0 180 360 540 720 900 1080
clkShaft

1st cylinder : intake compression combustion exhaust intake compression

2nd cylinder : intake compression combustion exhaust intake
· · ·

3rd cylinder : intake compression combustion exhaust

4th cylinder : intake compression combustion

Fig. 2 a 4 cylinder engine chronogram

5 Inference of clock relations

In this section, we present the clock relations extracted from Signal equations and
the associated clock calculus extended with the periodic sampling equation. In gen-
eral, a clock c denotes a set of tags in the polychronous model of computation. The
clock x̂ of a signal x denotes the tags at which the signal x is present. The clock [x]
(resp. [¬x]) denotes the tags at which a boolean signal x is present and true (resp.
false). The intersection ∩, union ∪ and the complement \ are the usual operators on
sets applied on the sets of tags representing clocks. The expression w@ c denotes the
clock obtained by the periodic sampling defined in Section 4. When we are talking

Analysis of Periodic Clock Relations in Polychronous Systems 53

about clocks, all the words are binary words. Any Signal process P corresponds to
a system of implicit clock relations C that denotes its implied timing structure.

c,d ::= x̂ | [x] | [¬x] | c∩d | c∪d | c\ d | w@ c (clock)
C,D ::= c = d | C ||D (clock relation)

The clock relations are specified by the inference system P : C that is recursively
defined by induction on the syntax of P. In a delay equation x = y pre v, the signals
are synchronous (x̂ = ŷ). In a sampling equation x = y when z, the clock x̂ is defined
by the clock ŷ at the sampling condition [z]. In a merge equation x = y default z, x̂
is present if either one of the clock y,z is. In a functional equation x = f(y,z) the
signals x,y,z are synchronous. In a periodic sampling equation x = w@ y, x is defined
by the atoms of w when y is true. The rule for composition P ||Q is defined to be C ||D
and by induction on the deductions P : C and Q : D made on its sub-terms.

x = y pre v :(x̂ = ŷ)
x = y when z :(x̂ = ŷ∩ [z])
x = y default z :(x̂ = ŷ∪ ẑ)

x = w@ y :(x̂ = w2 @ [y] (*)
|| [x] = [w]@ [y]
|| [¬x] = [¬w]@ [y])

P : C Q : D

P ||Q : C ||D

(*) w2, [w] and [¬w] are binary words respectively defined by

(a.w)2 =

⎛
⎝1,a = 1

1,a = -1
0,a = 0

⎞
⎠.w2 [a.w] =

⎛
⎝1,a = 1

0,a = -1
0,a = 0

⎞
⎠.[w] [¬a.w] =

⎛
⎝0,a = 1

1,a = -1
0,a = 0

⎞
⎠.[¬w]

Intuitively, the binary words w2, [w] and [¬w] are used to represent respectively pres-
ence, presence and true, presence and false of a boolean signal constrained by a
periodic sampling equation using a word w.

Property 2. Let c,d and e be clocks of a process P and w and w′ two binary words,
P : (c = w@ d | d = w′ @ e) ⇒ P : c = (w@ w′)@ e
Proof : We know that the operator @ is associative for binary words [5].
c = w@ (w′ @e) =⇒ c = (w@ w′)@ e.

6 Communication analysis

Most of reactive systems use communications between their different components.
In safety-critical domains, like car industry, there is a need for guaranteeing bounded
communications. In the particular case of reactive systems described with our model
of periodic processes, we provide a formal analysis allowing to determine minimal
buffer size required for communications.

Buffer size analysis We consider a definition of periodically equivalent clocks
based on the definition of synchronizable words (definition 2). Two clocks c and d
are periodically equivalent if there exists a clock r such that the tags of c and d are
included in the set of tags of r, and there are constraints c = wc @ r, d = wd @ r where

54 Hugo Metivier, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

wc,wd are synchronizable. It means that the difference of the number of presence of
the clocks c and d is bounded all times the clock r is present.

Definition 3. Two clocks c,d are periodically equivalent in P, noted c ∼ d, iff
∃r a clock, such that P : (c = wc @ r, || d = wd @ r) and wc ∼ wd

From this definition, we define the synchronization of a clock c on another clock
d, noted c � d. It constrains the nth occurrence of the clock c to precede the corre-
sponding one of the clock d for all n > 0. c and d must be periodically equivalent.
The operator � on the clocks is not commutative.

Definition 4. A clock c is synchronizable on a clock d in P, noted c � d, iff
1. c ∼ d, (i.e. ∃r a clock, such that P : (c = wc @ r, || d = wd @r), wc ∼ wd)
2. wc wd

When a clock c is synchronizable on a clock d, it means that values can be delayed
from the clock c to the clock d using a bounded buffer. The maximal size of the
buffer used by the delay can be computed. We thus obtain the minimal size of the
buffer to delay a signal of clock c for its use on clock d.

Property 3. Minimal buffer size to guarantee the communication between two syn-
chronizable clocks c and d in a process P.
From definition 4, we have c � d ⇔ P : (c = wc @ r, || d = wd @ r), wc ∼ wd and
wc wd . The minimal size of the buffer to guarantee the delay from the clock c to
the clock d is : size(c,d) = maxn>0(|wd |

1
n −|wc|

1
n)

The size(c,d) is the maximal difference between the numbers of presence of the
clocks d and c. This size is computable thanks to remark 1 (section 3).

Analysis of the minimal buffer size required for the process bufferFIFO The
inference system (P : C) defined in Section 5 applied on the process 4cylinderEngine

gives the following relations:
4cylinderEngine : (add = 0291(01791)@ clk | take = 0541(01791)@clk)

The two clocks add and take are periodically equivalent (definition 3) and synchro-
nizable (definition 4). So we can calculate the size of the buffer needed to delay
values from the clock add to the clock take : size(add, take) = 2. The communica-
tions between the acquisition of the data from the previous cycle of the engine to
the computation of the ignition date are guaranteed with a two place buffer.

Analysis of the number of components used for the computation of the igni-
tion date. In the 4cylinderEngine process, each process oneCylinder uses a ig-
nitionTime process to compute its ignition date. But this process could be shared
between several oneCylinder processes (ignitionTime is only running during the
intake phases). Just like for the above analysis of the minimal size of the FIFO
buffer, the same kind of analysis can be done to calculate the number of ignition-
Time processes required for the overall application. The ignitionTime process is
running between an occurrence of the startCalc signal to the next occurrence of
the resultCalc signal. The size function (between the clocks corresponding to the
start and the end of the running of the ignitionTime process) can be used here to
determine the maximal number of ignitionTime processes running at the same time.

Analysis of Periodic Clock Relations in Polychronous Systems 55

(
⋃

startCalc = 0541(01791)@clk |
⋃

resultCalc = 0690(01791)@clk)
The result is size(

⋃
startCalc,

⋃
resultCalc) = 1. Therefore one single compo-

nent can be used for the computation of the ignition date of the four processes
oneCylinder. The previous computation is always finished when a new computa-
tion starts.

Applying the same analysis for a 4-stroke engine with 6 cylinders defined on a
similar model than the 4cylinderEngine (with a delay of 120 degrees between the
clocks clkShaft) gives a result size of 2, so that two components are needed for the
computation of the ignition date of the six processes oneCylinder.

7 Conclusion

We have presented an extension of the polychronous model of computation of the
Signal formalism with a periodic sampling equation using ultimately periodic infi-
nite words. We have shown that periodic clock relations provide a calculus to com-
positionally reason about real-time relations in multi-clocked systems. Our main
contributions are the adaptation of periodic relations of [5] to Z/3Z and their han-
dling in the clock calculus associated with the polychronous model. This extension
is used for the design of periodic systems in Signal and we illustrated it with an ex-
ample of a 4-stroke engine. We gave an analysis allowing to guarantee the commu-
nications using bounded buffers; the maximal size of buffers is formally evaluated.

The work that has been done allows to analyse periodic systems that are designed
using the new specific periodic sampling equation introduced in Signal. A further
study would be to define a static analysis that would extract periodic relations from
implicit periodicities of the systems. This will allow to analyse a greater set of peri-
odic systems.

References
1. C. André, F. Mallet, R. de Simone. Modeling time in UML. Research report ISRN I3S/RR-

2007-16-FR, I3S Laboratory, 2007.
2. C. André, F. Mallet, M-A. Peraldi. A multiform time approach to real-time system modeling.

SIES, 2007.
3. A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The

Synchronous Languages Twelve Years Later. Proceedings of the IEEE. IEEE, 2003.
4. J. Buck, S. Ha, E. Lee, D. Messerschmitt. Ptolemy: a framework for simulating and prototyping

hetrogeneous systems. International Journal in Compuer Simulation, v4(2), 1994.
5. A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet. N-synchronous

Kahn networks: a relaxed model of synchrony for real-time systems. In POPL. ACM, 2006.
6. C. Dezan, P. Quinton. Verification of regular architectures using Alpha. In Adaptative Sensor

Array Processing Workshop. IEEE Press, 1994.
7. G. Kahn. The semantics of a simple language for parallel programming. Information Process-

ing, North Holland, 1974.
8. E. Kock, et al. Yapi: Application modeling for signal processing systems. Design Automation

Conference. ACM, 2000.
9. P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for system design. In Journal for

Circuits, Systems and Computers. World Scientific, 2003

56 Hugo Metivier, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

10. H. Marchand, E. Rutten, M. Le Borgne and M. Samaan. Formal Verification of programs spec-
ified with Signal : application to a power transformer station controller. In Science of Computer
Programming. Elsevier, 2001.

11. I. Smarandache, T. Gautier, P. Le Guernic. Validation of mixed Signal-Alpha real-time systems
through an affine calculus on clock synchronization constraints. In Formal Methods Europe.
Springer, 1999.

Formal Correctness of an Automotive Bus
Controller Implementation at Gate-Level

Eyad Alkassar, Peter Böhm, and Steffen Knapp

Abstract We formalize the correctness of a real-time scheduler in a time-triggered
architecture. Where previous research elaborated on real-time protocol correctness,
we extend this work to gate-level hardware. This requires a sophisticated analysis
of analog bit-level synchronization and message transmission. Our case-study is a
concrete automotive bus controller (ABC). For a set of interconnected ABCs we
formally prove at gate-level, that all ABCs are synchronized tight enough such that
messages are broadcast correctly. Proofs have been carried out in the interactive
theorem prover Isabelle/HOL using the NuSMV model checker. To the best of our
knowledge, this is the first effort formally tackling scheduler correctness at gate-
level.

1 Introduction

As more and more safety-critical functions in modern automobiles are controlled by
embedded computer systems, formal verification emerges as the only technique to
ensure the demanded degree of reliability. When analyzing correctness, as a bottom
layer, often, only some synchronous model of distributed electronic control units
(ECUs) sharing messages in lock-step is assumed. However, such models are im-

Eyad Alkassar1 · Steffen Knapp1

Saarland University, Dept. of Computer Science, 66123 Saarbrücken, Germany
e-mail: {eyad,sknapp}@wjpserver.cs.uni-sb.de

Peter Böhm1

Oxford University Computing Laboratory, Wolfson Building, Oxford, OX1 3QD, England
e-mail: peter.boehm@comlab.ox.ac.uk

1 Work partially funded by the German Research Foundation (DFG), by the German Federal Min-
istry of Education and Research (BMBF), and by the International Max Planck Research School
(IMPRS).

Please use the following format when citing this chapter:

Alkassar, E., Böhm, P. and Knapp, S., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded
Systems: Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 57–67.

58 Eyad Alkassar, Peter Böhm, and Steffen Knapp

plemented at gate-level as highly asynchronous time-triggered systems. Hence it
can not suffice to verify certain aspects of a system, as algorithms or protocols only.

In this paper we examine a distributed system implementation consisting of
ECUs connected by a bus. Our study has to combine arguments from three differ-
ent areas: (i) asynchronous bit-level transmission, (ii) scheduling correctness, and
(iii) classical digital hardware verification at gate-level.

Our contribution is to show, by an extended case-study, how analog, real-time
and digital proofs can be integrated into one pervasive correctness statement.

The hardware model has been formalized in the Isabelle/HOL theorem prover [11]
based on boolean gates. It can be translated to Verilog and run on a FPGA. All lem-
mata relating to scheduling correctness have been formally proven in Isabelle/HOL.
We have made heavy use of the model checker NuSMV [5] and automatic tools, e.g.
IHaVeIt [18], especially for the purely digital lemmata. Most lemmata dealing with
analog communication (formalized using reals) have been shown interactively.

Overview. The correctness of our gate-level implementation splits in two main
parts: (i) the correctness of the transmission of single messages and (ii) the correct-
ness of the scheduling mechanism initiating the message transmission and providing
a common time base. Next we outline these two verification goals in detail.

The verification of asynchronous communication systems must, at some point,
deal with the low-level bit transmission between two ECUs connected to the same
bus. The core idea is to ensure that the value broadcast on the bus is stable long
enough such that it can be sampled correctly by the receiver. To stay within such
a so-called sampling window, the local clocks on the ECUs should not drift apart
more than a few clock ticks and therefore need to be synchronized regularly. This
is achieved by a message encoding that enforces the broadcast of special bit se-
quences to be used for synchronization. The correctness of this low-level transmis-
sion mechanism cannot be carried out in a digital, synchronous model. It involves
asynchronous and real-time-triggered register models taking setup and hold-times
of registers as well as metastability into account. Our efforts in this respect are based
on [3, 8, 16].

Ensuring correct message transmission between two ECUs is only a part of the
overall correctness. Let us consider a set of interconnected ECUs. The scheduler has
to avoid bus contention, i.e. to ensure that only one ECU is allowed to broadcast at
a time and that all others are only listening. For that, time is divided into rounds,
which are further subdivided into slots. A fixed schedule assigns a unique sender to
a given slot number. The gate-level implementation of the scheduler has to ensure
that all ECUs have roughly the same notion of the slot-start and end times, i.e. they
must agree on the current sender and the transmission interval. Due to drifting clocks
some synchronization algorithm becomes necessary. We use a simple idea: A cycle
offset is added at the beginning and end of each slot. This offset is chosen large
enough to compensate the maximal clock drift that can occur during a full round.
The local timers are synchronized only once, at the beginning of each round. This
is done by choosing a distinguished master ECU, being the first sender in a round.

Formal Correctness of an Automotive Bus Controller Implementation at Gate-Level 59

The combination of the results into a lock-step and synchronous view of the
system is now simple. The scheduler correctness ensures that always only one ECU
is sending and all other ECUs do listen. Then we can conclude from the first part
that the broadcast data is correctly received by all ECUs.

Organization of the paper: In the remainder of this section we discuss the re-
lated work. In Section 2 we introduce our ABC implementation. Our verification
approach is detailed in Section 3. Finally we conclude in Section 4.

Related Work. Serial interfaces were subject to formal verification in the work
of Berry et al. [1]. They specified a UART model in a synchronous language and
proved a set of safety properties regarding FIFO queues. Based on that a hardware
description can be generated and run on a FPGA. However, data transmission was
not analyzed.

A recent proof of the Biphase-Mark protocol has been proposed by Brown and
Pike [4]. Their models include metastability but verification is only done at specifi-
cation level, rather than at the concrete hardware. The models were extracted man-
ually.

Formal verification of clock synchronization in timed systems has a long his-
tory [9, 12, 17]. Almost all approaches focused on algorithmic correctness, rather
than on concrete system or even hardware verification. As an exception Bevier and
Young [2] describe the verification of a low-level hardware implementation of the
Oral Message algorithm. The presented hardware model is quite simplified, as syn-
chronous data transmission is assumed.

Formal proofs of a clock-synchronization circuit were reported by Miner [10].
Based on abstract state machines, a correctness proof of a variant of the Welch-
Lynch algorithm was carried out in PVS. However, the algorithm is only manually
translated to a hardware specification, which is finally refined semi-automatically
to a gate-level implementation. No formal link between both is reported. Besides,
low-level bit transmission is not covered in the formal reasoning.

The formal analysis of large bus architectures was tackled among others by
Rushby [15] and Zhang [19]. Rushby worked on the time-triggered-architecture
(TTA), and showed correctness of several key algorithms as group membership
and clock synchronization. Assuming correct clock synchronization, Zhang verified
properties of the Flexray bus guardian. Both approaches do not deal with any hard-
ware implementation. The respective standard is translated to a formal specification
by hand.

In [14] Rushby proposes the separation of the verification of timing-related prop-
erties (as clock synchronization) and protocol specifications. A set of requirements
is identified, which an implementation of a scheduler (e.g. in hardware) has to obey.
In short (i) clock synchronization and (ii) a round offset large enough to compensate
the maximum clock drift are assumed. The central result is a formal and generic PVS
simulation proof between the real-time system and its lock-step and synchronous
specification. Whereas the required assumptions are similar to ours, they have not
been discharged for concrete hardware.

60 Eyad Alkassar, Peter Böhm, and Steffen Knapp

In [12] Rushby’s framework is instantiated with the time triggered protocol
(TTP). Pike [13] corrects and extends Rushby’s work, and instantiates the new
framework with SPIDER, a fly-by-wire communication bus used by NASA. The
time-triggered model was extracted from the hardware design by hand. But neither
approaches proved correctness of any gate-level hardware.

2 Automotive Bus Controller (ABC) Implementation

We consider a time-triggered scenario. Time is divided into so-called rounds each
consisting of ns slots. We uniquely identify slots by a tuple consisting of a round-
number r ∈ N and a slot-number s ∈ [0 : ns−1]. Predecessors (r,s)−1 and succes-
sors (r,s)+1 are computed modulo ns.

The ABC is split in four main parts: (a) the host-interface provides the connec-
tion to the host, e.g. a microprocessor, and contains configuration registers (b) the
send-environment performs the actual message broadcast and contains a send-buffer
(c) the receive-environment takes care of the message reception and contains a
receive-buffer (d) the schedule-environment is responsible for the clock synchro-
nization and the obedience to the schedule.

Configuration Parameter. Unless synchronization is performed, slots are locally
T hardware cycles long. A slot can be further subdivided into three parts; an initial
as well as a final offset (each off hardware cycles) and a transmission window (tc
hardware cycles). The length of the transmission window is implicitly given by the
slot-length and the offset. Within each slot a fixed-length message of ` bytes is
broadcast.

The local schedule sendl, that is implemented as a bit-vector, indicates if the
ABC is the sender in a given slot. Intuitively, in slot s, if sendl[s] = 1 then the ABC
broadcasts the message stored in the send-buffer. Note that the ABC implementation
is not aware of the round-number. It simply operates according to the slot-based
fixed schedule, that is repeated time and again.

The special parameter iwait indicates the number of hardware cycles to be
awaited before the ABC starts executing the schedule after power-up.

All parameters introduced so far are stored in configuration registers that need to
be set by the host (we support memory mapped I/O) during an initialization phase.
The host indicates that it has finished the initialization by invoking a setrd command.
We do not go into details here, the interested reader may consult [7, 8].

Message Broadcast. The send-environment starts broadcasting the message con-
tained in the send-buffer sb if the schedule-environment raises the startsnd signal.

The receive-environment permanently listens on the bus. At an incoming mes-
sage, indicated by a falling edge (the bus is high-active), it signals the start of a re-
ception to the schedule-environment by raising the startedrcv signal for one cycle.
In addition it decodes the broadcast frame and writes the message into the receive
buffer rb.

Formal Correctness of an Automotive Bus Controller Implementation at Gate-Level 61

offwait:
inccycle

iwait:
inccycle

reset

Twait:
inccycle

eqiwait:
clrcycle,clrslot

rcvwait

startbroad:
startsnd,
inccycle

idle

setrd ∧ sendl0:
clrcycle

¬eqiwait

eqoff ∧ sendlcur

eqT ∧ ¬eqns:
clrcycle, incslot

eqT ∧ eqns
∧ sendl0:

clrcycle, clrslot

eqoff ∧ ¬sendlcureqT ∧ eqns
∧ ¬sendl0

startedrcv:
setoff,
clrslot

¬eqT

¬startedrcv setrd ∧
¬sendl0

¬eqoff

¬setrd

Fig. 1 Schedule Automaton

Scheduling. The schedule-environment maintains two counters: The cycle counter cy
and the current slot counter csn. Both counters are periodically synchronized at the
beginning of every round. All ECUs except the one broadcasting in slot 0 (we call
the former slaves and the latter master) synchronize their counters to the incoming
transmission in slot 0. Hence, the startedrcv signal from the receive environment is
used to provide a synchronized time base (see below). Furthermore, the schedule-
environment initiates the message broadcast by raising the startsnd signal for one
cycle.

The schedule environment implements the automaton from Fig. 1. The automa-
ton takes the following inputs: The startedrcv signal as described above. The signal
setrd denotes the end of the configuration phase. The signal sendl0 indicates if the
ECU is the sender in the first slot and thus the master. Three signals are used to
categorize the cycle counter; eqiwait indicates if the initial iwait cycles have been
reached, similar to eqoff and eqT . The signal eqns indicates that the end of a round
has been reached, i.e. that the slot counter equals ns−1. Finally sendlcur indicates
if the ABC is the sender in the current slot, i.e. sendlcur = sendl[csn].

The automaton has six states and is clocked each cycle. Its functionality can be
summarized as follows: If the reset signal is raised (which is assumed to happen only
at power-up) the automaton is forced into the idle-state. If the host has finished the
initialization and thus invoked setrd we split cases depending on the sendl0 signal. If
the ABC is the master, i.e. if sendl0 holds, the ABC waits first iwait hardware cycles
(in the iwait-state), then an additional off cycles (in the offwait-state) before it starts
broadcasting the message (in the startbroad-state) and proceeds to the Twait-state.

If the ABC is a slave (sendl0 = 0), it waits in the rcvwait-state for an active
startedrcv signal and then proceeds to the Twait-state. There all ABCs await the end
of a slot indicated by eqT . Then we split cases if the round is finished or not. If
the round is not finished yet (indicated by ¬eqns), all ABCs proceed to the offwait-
state. Furthermore, the sender in the current slot (indicated by sendlcur) proceeds
to the startbroad-state, initiates the message broadcast and then proceeds to the
Twait-state; all other ABCs skip the startbroad-state and proceed directly to the
Twait-state. At the end of a round, the master simply repeats the ‘normal’ sender

62 Eyad Alkassar, Peter Böhm, and Steffen Knapp

cycle (from the Twait-state to the offwait-state and finally to the Twait-state again).
All other ABCs proceed to the rcvwait-state to await an incoming transmission.

Once initialized, the master ABC follows the schedule without any synchroniza-
tion. At the beginning of a round it waits off many cycles and initiates the broadcast.

The clock synchronization on the slave ABCs is done in the rcvwait-state. In this
state the cycle counter is not altered but simply stalls in its last value. At an incoming
transmission (from the master) the slaves clear their slot-counter and set their cycle
counter to off , i.e. the number of hardware cycles at which the master initiated the
broadcast. After this all ABCs are (relatively) synchronized to the masters clock.

Hardware Construction. The number of ECUs connected to the bus is denoted ne.
Thus an ECU number is given by u ∈ [0 : ne− 1]. We use subscript ECU numbers
to refer to single ECUs.

We denote the hardware configurations of ECUu by hu. If the index u of the ECU
does not matter, we drop it. The hardware configuration is split into a host configu-
ration and an ABC configuration. Since we do not go into details regarding the host,
we stick to h to denote the configuration of our ABC. Its essential components are:

• Two single bit-registers, one for sending and one for receiving. Both are directly
connected to the bus. We denote them h.S and h.R.
• A second receiver register, denoted h.R̂, to deal with metastability (see Sect. 3).
• Send buffer h.sb and receive buffer h.rb each capable of storing one message.
• The current slot counter h.csn and the cycle counter h.cy.
• The schedule automaton is implemented straight-forward as a transition sys-

tem on an unary coded bit-vector. We use h.state to code the current state (see
Fig. 1).
• Configuration registers.

The configuration registers are written immediately after reset / power-up. They
contain in particular the locally relevant portions of the scheduling function.

To simplify arguments regarding the schedule we define a global scheduling
function send. Given a slot-number s it returns the number of the ECU sending
in this slot. Let sendlu denote the local schedule of ECUu, then send(s) = u ⇔
sendlu[s] = 1. Note that this definition implicitly requires a unique sender definition
for each slot. Otherwise correct message broadcast becomes impossible due to bus
contention.

Thus if ECUu is (locally) in a slot with slot index s and send(s) = u then ECUu
will transmit the content of the send buffer h.sb via the bus during some transmission
interval. A serial interface that is not actively transmitting during slot (r,s) puts by
construction the idle value (the bit 1) on the bus.

If we can guarantee that during the transmission interval all ECUs are locally in
slot (r,s), then transmission will be successful. The clock synchronization algorithm
together with an appropriate choice of the transmission interval will ensure that.

Formal Correctness of an Automotive Bus Controller Implementation at Gate-Level 63

e (i)

ts th

Ω
x

y

tpd

R

clk

ce

s

clkr

s

e (j)r

r
din r

r

ΩSs,

Fig. 2 Clock Edges

time

te(r,s)ts(r,s)
ECU

ECU

ECU

send(s)

u

v
α (r,s)
v α ((r,s)+1)v

Fig. 3 Schedule

3 Verification

To argue about asynchronous distributed communication systems we have to for-
malize the behavior of the digital circuits connected to the analog bus. Using the
formalization of digital clocks we introduce a hardware model for continuous time.
In the remainder of this section we sketch the message transmission correctness, de-
tail the scheduling correctness and combine both into a single correctness statement.

Clocks. The hardware of each ECU is clocked by an oscillator having a nominal
clock period of τref . The individual clock period τu of an ECUu is allowed to deviate
by at most δ = 0.15% from τref , i.e. ∀u. | τu−τref |≤ τref ·δ . Note that this limitation
can be easily achieved by current technology.

Thus the relative deviation of two individual clock periods compared to a third
clock period is bounded by | τu− τv |≤ τw ·∆ where ∆ = 2δ/(1−δ).

Given some clock-start offset ou < τu the date of the clock edge eu(i) that starts
cycle i on ECUu is defined by eu(i) = ou + i · τu.

In our scenario all ECUs are connected to a bus. The sending ECUs broadcasts
data which is sampled by all other ECUs. Due to clock drift it is not guaranteed, that
the timing parameter of the sampling registers are obeyed. This problem is solved
by serial interfaces. To argue formally we first introduce a continuous time model
for bits being broadcast.

Hardware Model with Continuous Time. The problems solved by serial inter-
faces can by their very nature not be treated in a standard digital hardware model
with a single digital clock clk. Nevertheless, we can describe each ECUu in such a
model having its own hardware configuration hu.

To argue about the sender register h.S of a sending ECU transmitting data via
the bus to a receiver register h.R of a receiving ECU, we have to extend the digital
model.

For the registers connected to the bus –and only for those– we extend the hard-
ware model such that we can deal with the concepts of propagation delay (t pd),
setup time (ts), hold time (th), and metastability of registers. In the extended model
used near the bus we therefore consider time to be a real valued variable t.

Next we define in the continuous time model the output of the sender register hu.S
during cycle i of ECUu, i.e. for t ∈ (eu(i) : eu(i+1)]. The content of hu.S at time t is

64 Eyad Alkassar, Peter Böhm, and Steffen Knapp

denoted by Su(t). In the digital hardware model we denote the value of some register,
e.g. R, during cycle i by hi.R which equals the value at the clock edge eu(i+1).

If in cycle i−1 the digital clock enable Sce(hi−1
u) signal was off, we see during

the whole cycle the old digital value hi−1
u .S of the register. If the register was clocked

(Sce(hi−1
u) = 1) and the propagation delay t pd has passed, we see the new digital

value of the register, which equals the digital input Sdin(hi−1
u) during the previous

cycle (see Fig. 2). Otherwise we cannot predict what we see, which we denote by Ω :

Su(t) =

hi−1

u .S : Sce(hi−1
u) = 0∧ t ∈ (eu(i) : eu(i+1)]

Sdin(hi−1
u) : Sce(hi−1

u) = 1∧ t ∈ [eu(i)+ t pd : eu(i+1)]
Ω : otherwise

The bus is an open collector bus modeled as the conjunction over all registers Su(t)
for all t and u.

Now consider the receiver register hv.R on any ECUv. It is continuously turned
on; thus the register always samples from the bus. In order to define the new digital
value h j

v.R of register R during cycle j on ECUv we have to consider the value
of the bus in the time interval (ev(j)− ts,ev(j) + th). If during that time the bus
has a constant digital value x, the register samples that value, i.e. ∃x ∈ {0,1}. ∀t ∈
(ev(j)− ts,ev(j)+ th). bus(t) = x⇒ h j

v.R = x. Otherwise we define h j
v.R = Ω .

We have to argue how to deal with unknown values Ω as input to digital hard-
ware. We will use the output of register hu.R only as input to a second register hu.R̂
whose clock enable is always turned on, too. If Ω is clocked into hu.R̂ we assume
that hu.R̂ has an unknown but digital value, i.e. h j

u.R = Ω ⇒ h j+1
u .R̂ ∈ {0,1}.

In real systems the counterpart of register R̂ exists. The probability that R be-
comes metastable for an entire cycle and that this causes R̂ to become metastable
too is for practical purposes zero.

Continuous Time Lemmata for the Bus. Consider ECUs is the sender and ECUr
is a receiver in a given slot. Let i be a sender cycle such that Sce(hi−1

s) = 1, i.e. the
output of S is not guaranteed to stay constant at time es(i). This change can only
affect the value of register R of ECUr in cycle j if it occurs before the sampling
edge er(j) plus the hold time th, i.e. es(i) < er(j)+th. The first cycle that is possibly
being affected is denoted by cyr,s(i) = min{ j | es(i) < er(j)+ th}.

In what follows we assume that all ECUs other than the sender unit ECUs put the
value 1 on the bus and keep their Sce signal off (hence bus(t) = Ss(t) for all t under
consideration). Furthermore, we consider only one receiving unit ECUr. Because
the indices r and s are fixed we simply write cy(i) instead of cyr,s(i).

Theorem 1 (Message Broadcast Correctness). Let the broadcast start in sender-
cycle i. The value of the send buffer of ECUsend(s) is copied to all receive buffers on

the network side within tc sender cycles, i.e. ∀u. hcy(i+tc)
u .rb = hi

send(s).sb.

This theorem is proven by an in-depth analysis of the send-environment and the
receive-environment. For details see [8]. We do not go into details regarding the
message transmission here. Instead we focus on the scheduling correctness.

Formal Correctness of an Automotive Bus Controller Implementation at Gate-Level 65

Scheduling. We assume w.l.o.g. that the ECU with number 0 is the master, i.e.
send(0) = 0. Let pu be the point in time when ECUu is switched on. We assume
that at most cpmax hardware cycles have passed on the master ECU from the point
in time it was switched on until all other ECUs are switched on, too. Thus ∀u. |
pu− p0 | ≤ cpmax · τ0.

Once initialization is done, all hosts invoke a setrd command. The master ECU
waits iwait hardware cycles before it starts executing the schedule. We assume that
that there exists a point in time denoted Imax at which all slaves have invoked the
setrd command and await the first incoming message. This assumption can be easily
discharged by deriving an upper bound for the duration of the initialization phase,
say imax hardware cycles in terms of the master ECU, and choosing iwait to be
cpmax + imax. The upper bound can be obtained by industrial worst case execution
time (WCET) analyzers [6] for the concrete processor and software.

We introduce some notation to simplify the arguments regarding single slots.
The start time of slot (r,s) on an ECUu is denoted by αu(r,s). Initially, for all u we
define αu(0,0) = Imax. To define the slot start times greater than slot (0,0) we need
a predicate schedexec that indicates if the schedule automaton is in one of three
executing states, i.e. schedexec(hi

u) = hi
u.state ∈ {offwait,Twait,startbroad}. Let c

be the smallest local hardware cycle such that eu(c) is greater than αu((r,s)− 1),
schedexec(hc

u) holds, hc
u,cy = 0, and hc

u.csn = s. Moreover let c′ be the smallest
cycle sucht that eu(c′) is greater than αu((r,s)−1) and hc′

u .state = rcvwait.

αu(r,s) =
{

eu(c) : u = 0∨ s > 0
eu(c′) : otherwise

Using the definition of a clock edge we obtain the hardware cycle corresponding
to αu(r,s), denoted by αtu(r,s).

The local timers are synchronized each round. Next we define the point in time
when the synchronization is done in round r. The synchronization end time of round
r on ECUu, denoted by βu(r), is defined similar to the slot start time. Let c be
the smallest hardware cycle such that that schedexec(hc

u) holds, cyclec
u = off , and

slotc
u = 0. Then βu(r) is defined by eu(c).

Lemma 1 (Synchronization Times Relation). For all u the synchronization of
ECUu to the master is completed within the adjustment time ad = 10 cycles rel-
ative to an arbitrary clock period τw, i.e. β0(r) = α0(r,0) + off · τ0 and βu(r) <
β0(r)+10 · τw

The proof of this lemma is split in two parts. First, an analysis of the sender bounds
the delay between an active startsnd signal and the actual transmission start. Second,
we need to bound the delay on the receiver side until the startedrcv signal is raised
after an incoming transmission plus an additional cycle to update the counters and
the schedule control automaton. Next we relate the start times of slots on the same
ECU.

Lemma 2 (Slot Start Times Relation). The start of slot (r,s) on the master ECU
depends only on the progress of the local counter, i.e. α0(r,s) = α0((r,s)−1)+T ·τ0.
The start of slot (r,s) on all other ECUs is given by:

66 Eyad Alkassar, Peter Böhm, and Steffen Knapp

αu(r,s) =

{
βu(r)+(T −off) · τu : s = 1
αu((r,s)−1)+T · τu : s 6= 1

Proof by induction on r and s using arguments for the concrete hardware.
The transmission is started in slot (r,s) by ECUsend(s) if the local cycle count

equals off . This point in time is denoted by ts(r,s) = αsend(s)(r,s)+off ·τsend(s). Ac-
cording to Theorem 1 the transmission ends at time te(r,s) = ts(r,s)+ tc · τsend(s) =
αsend(s)(r,s)+(off + tc) · τsend(s).

The schedule is correct if the transmission interval [ts(r,s), te(r,s)] is contained
in the time interval, when all ECUs are in slot (r,s), as depicted in Fig. 3.

Theorem 2 (Schedule Correctness). All ECUs are in slot (r,s) before the transmis-
sion starts. Furthermore, the transmission must be finished before any ECU thinks
it is in the next slot, i.e. αu(r,s) < ts(r,s) and te(r,s) < αu((r,s)+1)

This theorem is proven by a case split on (r,s) using Lemmata 1 and 2. Now we can
state the overall transmission correctness in the digital hardware model:

Theorem 3 (Overall Transmission Correctness). Consider slot (r,s). The value of
the send buffer of ECUsend(s) at the start of slot (r,s) is copied to all receive buffers

by the end of that slot, i.e. ∀u. hαtu((r,s+1))−1
u .rb = h

αtsend(s)(r,s)
send(s) .sb

To prove this theorem we combined Theorem 1 and Theorem 2. According to The-
orem 1 the actual broadcast is correct if the transmission window [ts(r,s), te(r,s)] is
big enough. The latter is proven by Theorem 2.

4 Conclusion

In this paper we present a formal correctness proof of a distributed automotive sys-
tem at gate-level (Sect. 3) along with its hardware implementation (Sect. 2). The
hardware model has been formalized in Isabelle/HOL on boolean gates.

While a simple version of the message transmission correctness has already been
published before [8,16], in this new work, we have formally analyzed the scheduler
itself and have integrated both results into a single correctness statement. All lem-
mata relating to scheduling correctness have been formally proven in Isabelle/HOL
which took about one person year.

We used automatic tools as the symbolic, open source model checker NuSMV,
to discharge properties related to bit-vector operations and the schedule automaton
of the hardware. With our implementation heavily using bit-vectors, we ran into
the infamous state explosion problem. By resorting to IHaVeIt (a domain-reducing
preprocessor for model checkers) we were able to cope with this problem. However,
missing support for real-linear arithmetic in the automatic tool landscape, made the
verification of the analog and timed models tedious. Yet the integration of decision
procedures of dense-order logic would be helpful. In short: automatic tools took a

Formal Correctness of an Automotive Bus Controller Implementation at Gate-Level 67

heavy burden from us in the digital world but were almost useless for continous-
timed analysis.

Summing up, our work provides a strong argument for the feasibility of formal
and pervasive verification of concrete hardware implementations at gate-level.

References

1. Berry, G., Kishinevsky, M., Singh, S.: System level design and verification using a syn-
chronous language. In: ICCAD, pp. 433–440 (2003)

2. Bevier, W., Young, W.: The proof of correctness of a fault-tolerant circuit design. In: Second
IFIP Conference on Dependable Computing For Critical Applications, pp. 107–114 (1991)

3. Beyer, S., Böhm, P., Gerke, M., Hillebrand, M., In der Rieden, T., Knapp, S., Leinenbach, D.,
Paul, W.J.: Towards the formal verification of lower system layers in automotive systems. In:
ICCD ’05, pp. 317–324. IEEE Computer Society (2005)

4. Brown, G.M., Pike, L.: Easy parameterized verification of biphase mark and 8N1 protocols.
In: TACAS’06, LNCS, vol. 3920, pp. 58–72. Springer (2006)

5. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Marco Pistore, M.R., Sebastiani,
R., Tacchella, A.: NuSMV 2: An open source tool for symbolic model checking. In: CAV ’02,
pp. 359–364. Springer-Verlag (2002)

6. Ferdinand, C., Martin, F., Wilhelm, R., Alt, M.: Cache Behavior Prediction by Abstract Inter-
pretation. Sci. Comput. Program. 35(2), 163–189 (1999)

7. Hillebrand, M., In der Rieden, T., Paul, W.: Dealing with I/O devices in the context of perva-
sive system verification. In: ICCD ’05, pp. 309–316. IEEE Computer Society (2005)

8. Knapp, S., Paul, W.: Realistic Worst Case Execution Time Analysis in the Context of Pervasive
System Verification. In: Program Analysis and Compilation, LNCS, vol. 4444, pp. 53–81
(2007)

9. Lamport, L., Melliar-Smith, P.M.: Synchronizing clocks in the presence of faults. J. ACM
32(1), 52–78 (1985)

10. Miner, P.S., Johnson, S.D.: Verification of an optimized fault-tolerant clock synchronization
circuit. In: Designing Correct Circuits. Springer (1996)

11. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, LNCS, vol. 2283. Springer (2002)

12. Pfeifer, H., Schwier, D., von Henke, F.W.: Formal verification for time-triggered clock syn-
chronization. In: DCCA-7, vol. 12, pp. 207–226. IEEE Computer Society, San Jose, CA
(1999)

13. Pike, L.: Modeling Time-Triggered Protocols and Verifying Their Real-Time Schedules. In:
FMCAD’07, pp. 231–238 (2007)

14. Rushby, J.: Systematic formal verification for fault-tolerant time-triggered algorithms. IEEE
Transactions on Software Engineering 25(5), 651–660 (1999)

15. Rushby, J.: An overview of formal verification for the time-triggered architecture. In:
FTRTFT’02, LNCS, vol. 2469, pp. 83–105. Springer-Verlag, Oldenburg, Germany (2002)

16. Schmaltz, J.: A Formal Model of Clock Domain Crossing and Automated Verification of
Time-Triggered Hardware. In: FMCAD’07, pp. 223–230. IEEE/ACM, Austin, TX, USA
(2007)

17. Shankar, N.: Mechanical verification of a generalized protocol for byzantine fault tolerant
clock synchronization. In: FTRTFT’92, vol. 571, pp. 217–236. Springer, Netherlands (1992)

18. Tverdyshev, S., Alkassar, E.: Efficient bit-level model reductions for automated hardware ver-
ification. In: TIME 2008, to appear. IEEE Computer Society Press (2008)

19. Zhang, B.: On the Formal Verification of the FlexRay Communication Protocol. Automatic
Verification of Critical Systems (AVoCS’06) pp. 184–189 (2006)

Unifying HW Analysis and SoC Design Flows by
Bridging Two Key Standards: UML and
IP-XACT

Sebastien Revol, Safouan Taha, François Terrier, Alain Clouard, Sébastien Gerard,
Ansgar Radermacher, and Jean-Luc Dekeyser

Abstract In order to save time and improve efficiency, all SoC development pro-
cesses are separated into many parallel flows. These flows should keep a strong
communication to avoid redundancy and incoherency. We distinguish two main
trends. One aims at designing and implementing hardware when the other focuses
on its functional description that may serve to software architecturing, analysis and
allocation. Even if both are newly using UML, no connections have been made
to synchronize them. The goal of this work is then to bridge permanently the gap
between those two hardware design trends by unifying their corresponding model-
based standards: UML and IP-XACT.

1 Introduction

Many initiatives are working on adapting the Unified Modelling Language (UML),
for Hardware design in order to benefit from model driven development, reuse, re-
finement and complexity management. In electronics system design, depending on
the modelling purpose, we can distinguish two main trends. One aims to imple-
ment hardware, describing circuits (structure and behaviour) using UML techniques
[8][9][10][11]. The other trend focuses on functional description of hardware for
analysis and allocation purposes [1][2]. These two approaches have never been effi-
ciently unified, keeping the two modelling flows separated.

The number of the various UML diagrams enables to address many different
aspects of a system. Moreover UML offers specialization mechanism for specific

Sebastien Revol · Alain Clouard
STMicroelectronics, e-mail: firstname.lastname@st.com

Safouan Taha · François Terrier · Sébastien Gerard · Ansgar Radermacher
CEA LIST, e-mail: firstname.lastname@cea.fr

Jean-Luc Dekeyser
INRIA-DaRT, e-mail: dekeyser@lifl.fr

Please use the following format when citing this chapter:

Revol, S., et al., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded Systems: Design,
Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 69–78.

70 Sebastien Revol et al.

domains, namely the UML profile capability. An UML profile is a set of stereotypes
that extend UML concepts, and bring them a specialized semantics. It is the standard
way to tune this general purpose language for a particular domain.

In the domain of System on Chip (SoC) design, different initiatives worked on
defining profiles, having in mind a code generation purpose and using UML as a
hardware design language. The UML SoC profile [10], standardized by the OMG
(Object Management Group), proposes a graphical description of the SoC structure
and permits SystemC1 code generation. Likewise, the UML profile for SystemC
[12] is a one-to-one transcription in UML context of all SystemC concepts including
behaviour aspects. However, those profiles are often too close to the implementation
languages and this has for effect to extend UML with implementation semantics. To
resolve this point, our strategy was to get inspired from the IPXACT2 concepts. This
standard, widespread in the electronics community, is defined by the SPIRIT con-
sortium with the objective to factorize in an XML grammar the hardware concepts,
and to clearly dissociate the structural characteristics of a component (interfaces,
registers etc.) from the way they are implemented. At STMicroelectronics we de-
veloped the ESL (Electronic System Level) profile that extends UML with IP-XACT
concepts, allowing interoperability between them as well as the derivation of these
formalisms into specific implementation languages.

In parallel to the hardware implementation flow, it is a common practice to spec-
ify functional, abstracted and understandable hardware models in order to commu-
nicate design intends and study interdependencies between hardware and software.
Software design, allocation and analysis (e.g schedulability) require a high level
description model of the hardware architecture in terms of number of processors,
amount of memory Several profiles were also developed to define functional mod-
els of hardware like SPT [1] and AADL [2]. They classify resources whether if
they are for computing, storage, communication and so on. These profiles are only
introducing generic concepts and they are really lacking details and specific em-
bedded systems properties. As a part of the new OMG standard MARTE [3] (Mod-
elling and Analysis of Real-Time and Embedded systems), we developed in CEA
LIST the HRM [4][5] (Hardware Resource Model) profile that is an open frame-
work for UML-based hardware modelling. It provides many functional views and
covers many detail levels.

The reason behind the separation between implementation models and functional
ones, is the inadequacy between their levels and nature of details. This separation
leads to redundancy and incoherency between these parallel flows. Implementation
models are considered as very low level specification that cant serve for functional
description. In this paper, we demonstrate that HRM profile is enough detailed, and
ESL profile is enough abstracted to be able to define bridges between a functional
description and an implementation one. Relying on the UML capability to provide
different views of the same model, we succeeded to unify both profiles, so that they

1 Open SystemC Initiative, www.systemc.org
2 The Spirit Consortium: www.spiritconsortium.org

Unifying HW Analysis and SoC Design Flows 71

can be applied on an unique model, serving both for analysis and implementation
concerns.

In the following sections, we will first present the HRM profile, its concepts and
the way they can be used. Then we will introduce the ESL profile and its interoper-
ability with IP-XACT. Last we will describe the unification process and illustrate it
within a small example.

2 MARTE standard: Hardware Resource Model

The new OMG standard MARTE is proposed to replace the UML profile for
Schedulability, Performance and Time (SPT). It handles the heterogeneity of em-
bedded systems by adopting the Y-model [6] which consists of three models repre-
sented by different colours within Figure 1:

• Application model of the system tasks.
• Resource model of the execution platform, which is, in turn, composed of:

– Software Resource Model describes the software execution platform (e.g. an
operating system, drivers).

– Hardware Resource Model.

• Allocation model that maps the application onto resources.

Fig. 1 MARTE structure

MARTE extends UML with a detailed Hardware Resource Model (HRM). This
latter is intended to serve for functional description of hardware platforms, through
different views and detail levels [4]. The Hardware Resource Model is grouping
most of hardware concepts under a hierarchical taxonomy with several categories

72 Sebastien Revol et al.

depending on their nature, functionality, technology and form. It is composed of
two subprofiles, a logical one that classifies hardware resources depending on their
functional properties, and a physical profile that focuses on their physical proper-
ties. HRM exploits particularly the Non-Functional Properties (NFP) package of
MARTE [7] that allows quantitative annotations with measurement units and pro-
vides a rich UML library of basic types like Duration, Data Transmission Rate, Data
Size and Power.

In this paper we will focus on the logical part of HRM that classifies hardware re-
sources depending on their functional properties. The objective is then to provide a
functional taxonomy of hardware resources, whether if they are computing, storage,
communication, timing or auxiliary devices. This classification is mainly based on
services that each resource offers. A big amount of stereotypes are introduced within
HRM, they are rigorously specified and organized under a tree of successive inher-
itances from generic stereotypes to specific ones, no stereotype is orphan because a
particular care has been made to explicit semantic relations and links among all the
needed concepts. This is the reason behind the ability of the HRM profile to cover
many abstraction levels. Another feature of the HRM is support of most hardware
concepts thanks to a big range of stereotypes and once more its layered architec-
ture. If no specific stereotype corresponds to a particular hardware component, a
generic stereotype may match. This is appropriate to support new hardware compo-
nents and new technologies. Finally, HRM includes many notations, and there is an
appropriate icon for each logical stereotype.

Fig. 2 HwMemory and HwCache stereotypes

In Figure 2 we extracted a part of the memory package from the logical subpro-
file of HRM. HwCache is a processing memory where frequently used data can be
stored for rapid access. HwCache may vary depending on its level, type and struc-
ture. The cache structure is organized under sets of blocks, where associativity value
is the number of blocks within one set.

In order to maximize flexibility, HRM stereotypes extend most UML structural
concepts, allowing the use of the profile within any structural UML diagram. How-

Unifying HW Analysis and SoC Design Flows 73

ever, we provide in [5], a specific methodology to guide the hardware designers
within an incremental process of successive compositions. It helps to resourcefully
use HRM and benefit from its features. Finally, notice that we provide the XMI of
the profile. This enables using XML-based technologies like model transformation
and code generation for analysis, allocation or simulation of hardware models.

3 Electronic System Level Profile

The objective of the ESL profile is to provide a first view of the hardware architec-
ture as a starting point of the refinement flow toward implementation, just after hard-
ware software partitioning. Since this partitioning often leads to the reuse of existing
components as well as the definition of new components, the goal of our profile is
to provide both a strong IP interconnection mechanism and a way to ex-press the
specifications permitting to quickly derive the implementation of new components.
The following figure illustrates the role of ESL in the workflow.

Fig. 3 Transformations workflow around the ESL profile

3.1 Positioning the profile

Regarding other initiatives, our objectives may seem similar to the OMGs SoC pro-
file. However, the analysis of this profile led us to conclude that its semantics was
very close to the old 2.0 version of SystemC. Particularly, the interconnection se-
mantics, based on soc port that can be in, out or inout and must be connected to
soc interface implementations, really constrains the SoC description to the SystemC
coding-style (with sc in, sc out, sc inout ports and sc interface). This way to pro-
ceed does not provide an efficient way to describe a connection such as a master
bus interface, which may be later implemented with a set of in and out ports. More-
over, the register memory map description of a component is an important concept
when describing an IP, being at the frontier of the structure and the functionality of
the component (since a register is a structural feature that may influence the way a

74 Sebastien Revol et al.

component will work). This notion unfortunately does not appear in the SoC profile
(neither in SystemC).

On the other side, the goal of IP-XACT is to provide a standard XML abstraction
of HW components implementation files, whatever the language is (VHDL, Verilog,
SystemC, etc.). Hence, they can be handled with standard compliant EDA tools, to
favor the reuse of IPs. To do so, the members of the SPIRIT consortium realized a
big effort to identify the concepts that represent the characteristics of a component
from those that are specific to a particular implementation. Our approach was to se-
lect in the IP-XACT grammar the concepts that could be useful in an UML flow, not
in order to replace IP-XACT with UML, but to provide a way to use them comple-
mentarily. Indeed, UML better fits for the definition of new components, whereas
IP-XACT provides specific mechanisms for their instantiation.

The introduction of IP-XACT concepts into UML positions the ESL profile as a
pivot language. As illustrated in figure 3, it enables the translation between a IPX-
ACT models an UML ones. Moreover, the structural information contained in an
ESL model can then be used to transform this model into a specific implementation,
either directly to code, either to intermediate language specific profiles, such as the
SystemC profile. Indeed the interest of relying on this intermediate model is then
that it permits to complete the model with language specific concepts (including be-
havior) and to connect this implementation to the its ESL specification in order to
generate a full coherent IP-XACT description.

3.2 Main profile concepts

Providing a behavioural description of hardware components independently from
the abstraction level and the language they are implemented appeared for us a real
challenge (that is not addressed by IP-XACT). Consequently, we had to focus and
started by the structural description. The concepts we defined can be grouped into
three main categories: the identification, the interconnections mechanisms and the
register memory map.

The reuse of existing components implies to identify them clearly. To do this,
IP-XACT provides the HW component with a unique identifier, based on the four
attributes that are: the Vendor name, the Library to which it belongs, the Name of
the component, and its last Version (VLNV). It is translated by extending the UML
StructuredClass metaclass with a HWComponent stereotype, owning three tagged
values (Vendor, Library and Version, the name of the component being mapped on
the name attribute of the Class).

IP-XACT interconnection mechanisms is translated to UML using the port and
provided/required interface UML concepts. However, IP-XACT introduces the Bus-
Definition principle, which defines compatibility rules to connect together master
and slave BusInterfaces. Instead of dealing only with in and out ports, the BusInter-
face represents a connection point of the component defined by a protocol (BusDef-
inition). We mainly distinguish two types of connection points: a Master- BusIf
which initiates communication transactions and a SlaveBusIf that only answers

Unifying HW Analysis and SoC Design Flows 75

them. The protocol type was expressed with the UML Interface concept, which also
has to be uniquely identified with a VLNV. So, we used the provided and required
interface mechanisms to express that a MasterBusIf requires the interface and must
be only connected to a SlaveBusIf providing it.

The register map description relies on the Definition/Instantiation mechanism
provided by the Class/Property couple. As illustrated in Figure 4, a component can
instantiate several register maps that are defined by the RegisterMapDef. The latter
can instantiate, in turn, several registers, characterized by several attributes such as
their address offset, bit-width, multiplicity, access type (read-only, readwrite, write-
only) and so on. By the same way, a register definition instantiate fields (set of
bits in a register), also characterized by the same kind of attributes. Each definition
concept is then mapped on a Class stereotype with the tagged values corresponding
to its respective attributes, whereas each instance concept is mapped on a property
stereotype, also accompanied of its tagged values.

Fig. 4 Register map model

4 Unification of both approaches

Both HRM and ESL profiles permit to describe the structure of a hardware plat-
form. In practice, they are used on the same kind of diagrams: the class diagram
for the definition of components, and the composite structure diagram to describe
module interconnections, and the hierarchical structure of the IP. However the con-
cepts added to UML via the stereotypes of each profiles are not conflicting, but
rather complementary. Whereas HRM brings to the model some information about
the functionality of the IP, the ESL profile focuses on the way it will be imple-
mented. On one hand, HRM introduces many stereotypes for each hardware func-
tion when ESL profile has a unique HWComponent concept permitting to identify
components. On the other hand, HRM does not provide a strong interconnection se-
mantics, with only a single stereotype to describe a connection point (HwEndPoint)
when the ESL profile provides stronger connection rules distinguishing different

76 Sebastien Revol et al.

kinds of connection points. The ESL profile also provides a fine grain description of
the IP internal structure (e.g. registers) that is not addressed at all by HRM.

HRM will be useful for platform architects who want to analyse the characteris-
tics of the system under construction, and study the mapping of an application on
this platform. The ESL profile will then be used to specify and realize this platform,
containing enough information to generate a big part of its implementation.

Fig. 5 Design flows unification process

UML allows the application of many stereotypes onto the same element, these
stereotypes could come from the same profile as they could belong to different ones.
In the first case, it means that the resource is playing many roles in the domain
specified with the corresponding profile. While in the second case, it is an adequate
way to merge concepts coming from different domains in the same model. In fact,
we will unify different concerns that are defined in unconnected profiles into one
complete hardware model, by means of multi-profile application.

The Figure 5 illustrates the development process we propose to manage the uni-
fication of design flows. First, we defined an UML library of hardware components
on which we applied both ESL and HRM profiles. Each component is annotated
with many stereotypes (as shown on Figure 7), there is at least one stereotype from
ESL for implementation semantics and one stereotype from HRM for functional
ones. This way we are filling a library of models that is conform to IP-XACT. Then,
importing this library, the hardware designer may build its hardware platform by ar-
ranging and connecting components in an adequate way thanks to ESL stereotypes.
Once the platform model is built and thanks to UML, we automatically provide
two projections of the platform, one for implementation that only extracts the ESL
annotations from the library, and one for functional purposes (e.g. software archi-
tecturing) that is HRM-based.

Unifying HW Analysis and SoC Design Flows 77

Therefore, two development flows are separated but keep sharing the same
model, which means that they keep a strong communication between each-other.
Suppose that in an incremental or refinement process, one of the design flows
changed the hardware platform model, it will be automatically mirrored on the other
flows view.

Fig. 6 Hardware platform functional view

Lets do a simple example, we create an SMP hardware platform where two pro-
cessors proc1 and proc2 are sharing one system bus and the same main RAM mem-
ory mem. Figure 6 is a typical functional view of such platform model. It is used
by software developers to take into account the multiprocessing aspect by designing
a multi-tasks application. This view is also used by system designers for allocation
or schedulability analysis, who may map each application task on one of the two
processors depending on their strategy criteria and then test the adequation.

Fig. 7 The hardware component pwp timer

Lets assume that the architectural study led to define a new timer component.
The ESL profile will permit to specify its interfaces as well as its register map (Fig-
ure 7). The model transformation we developed enables the generation of more than
80% of its UML-SystemC implementation model, including base class inheritance,
ports and registers declarations. It also generates the address decoding algorithms in
the read/write communication API, containing meaningful debugging messages and
taking into account the access type of each registers. After this step, the designer can
complete its model, adding the missing behavioural features with for instance the
state machines of the SystemC-profile, and generate both the full executable code

78 Sebastien Revol et al.

and the coherent IP-XACT description. The latter allows handling this new IP in
any IP-XACT compliant CAD tools.

5 Conclusion

We have presented a way to efficiently join different flows of the SoC design for
which model-based approaches present interesting benefits. The ESL profile, intro-
duced for the first time in this paper, acts as a pivot between three key aspects: the
functional analysis provided by the MARTE profile, the design approaches with
language-specific UML profiles and the IP-XACT industrial standard. Its level of
details, compatible with the MARTE-HRM profile, enables to use both of them on
a single model. This unification permits to work on one central model where three
were needed before, avoiding not only a duplication of modelling efforts, but also
the risk of inconsistency between the different models. Although we believe that
the automation possibilities can still be improved by connecting our approach with
higher level specifications processes, the efficient integration of different industrial
standards we have presented in this paper let us foresee a soon adoption of this
approach in a real industrial context.

References

1. Object Management Group, UML profile for Schedulability, Performance and Time (SPT),
Version 1.1. OMG Document, 05-01-02.

2. Avionics Architecture Description Language Standards Document (AADL),
http://www.aadl.info.

3. Object Management Group, UML profile for Modeling and Analysis of Real-Time and Em-
bedded systems (MARTE), http://www.omgmarte.com.

4. S. Taha, A. Radermacher, S. Gerard and J-L. Dekeyser. An Open Framwork For Detailed
Hardware Modeling In IEEE proceedings SIES2007, pages 118-125, Lisboa, July 2007.

5. S. Taha, A. Radermacher, S. Gerard and J-L. Dekeyser. MARTE: UML-based Hardware De-
sign from Modeling to Simulation. In proceedings FDL07, Barcelona, September 2007.

6. L. Bonde, P. Boulet, A. Cucurru, J-L. Dekeyser, C. Dumoulin, P. Marquet, S. Meftaly and M.
Samyn, Model Driven Engineering for Distributed Embedded Real-Time Systems, chapter
Model Driven Architecture for Intensive Embedded Systems, ISTE, August 2005.

7. H.Espinoza, H.Dubois, S.Gerard, J.Medina, D.C.Petriu. Annotating UML Models with Non-
Functional Properties for Quantitative Analysis, Proc of MODELS2005 Sattelite Events, Lec-
ture Notes in Computer Science, Springer, 2006.

8. Y. Wang, X.G. Zhou, B. Zhou, L. Liang and C.-L. Peng. A MDA based SoC Modeling Ap-
proach using UML and SystemC. Proceedings of the Sixth IEEE International Conference on
Computer and Information Technology (CIT’06)

9. T. Schattkowsky, J. Hendrik Hausmann, G. Engels. Using UML Activities for System-on-
Chip Design and Synthesis, In proceedings of MoDELS 2006, Genova, Italy October 2006

10. Q. Zhu, R. Oishi and T. Hasegawa, T. Nakata, Integrating UML into SoC Design Process,
DATE ’05: Proceedings of the conference on Design, Automation and Test in Europe

11. W. Mueller, A. Rosti, S. Bocchio, E. Riccobene, P. Scandurra, W. Dehaene, Y. Vanderperren,
UML for ESL design: basic principles, tools, and applications, ICCAD ’06: Proceedings of
the 2006 IEEE/ACM international conference on Computer-aided design

12. Riccobene, E; Scandurra, P.; Rosti, A.; Bocchio, S., A model-driven design environment for
embedded systems, Design Automation Conference, 2006

Expressing Environment Assumptions and
Real-time Requirements for a Distributed
Embedded System with Shared Variables

Simon Tjell and João M. Fernandes

Abstract In a distributed embedded system, it is often necessary to share variables
among its computing nodes to allow the distribution of control algorithms. It is
therefore necessary to include a component in each node that provides the service
of variable sharing. For that type of component, this paper discusses how to create a
Colored Petri Nets (CPN) model that formally expresses the following elements in
a clearly separated structure: (1) assumptions about the behavior of the environment
of the component, (2) real-time requirements for the component, and (3) a possible
solution in terms of an algorithm for the component. The CPN model can be used
to validate the environment assumptions and the requirements. The validation is
performed by execution of the model during which traces of events and states are
automatically generated and evaluated against the requirements.

1 Introduction

In this paper, we describe an approach to requirements engineering using Colored
Petri Nets that has been devised during an industrial case study concerning an au-
tomated hospital bed. A control system allows the bed to be adjusted into different
positions by moving the sections on which the mattress rests. The control system
depends on transparent sharing of variables among a group of embedded nodes. For
this purpose, a communication component has been developed and, in this paper, we
focus on the documentation and validation of the requirements for this component.

Fig. 1 shows a simplified overview of the control system. The system consists of
a collection of autonomous embedded nodes, connected by a communication bus.
Each node is physically connected to a collection of actuators (A1...3) and sensors

Simon Tjell
Department of Computer Science, University of Aarhus, Denmark

João M. Fernandes
Departamento de Informática, Universidade do Minho, Portugal

Please use the following format when citing this chapter:

Tjell, S. and Fernandes, J.M., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded
Systems: Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 79–88.

80 Simon Tjell and João M. Fernandes

(S1...2) that are controlled and monitored by local applications (App1...5). The control
system is distributed, because an application running in one node is able to monitor
sensors and control actuators connected to any node with the limitation that each
actuator is controlled by exactly one application. Remote monitoring and control is
made possible by a collection of shared variables. A variable value can be used for
(1) the current reading of a sensor (e.g. an angle or a push button), (2) the current
output for an actuator (e.g. the displacement of a linear actuator), or (3) a link be-
tween two applications. Two kinds of variable instances exist: originals and copies.
A variable original exists in the node where new values to the variable is written by a
locally running application. One example could be that App2 in Node1 periodically
reads a current from the S1 sensor and writes the measurement to the Var2 variable
original. In Node2, the application App3 relies on the readings of S1 for its task of
controlling the A2 actuator. For this reason, Node2 houses a variable copy instance
of Var2 that is kept updated to have the same value as the variable original and thus
providing the input from S1 to App3.

A1 S1 A2 S2 A3

Node2

Applications

App5App4App3

Variables
Originals Copies

Var2

Communication Component

Communication Bus

Variables

Var3

Var5

Communication Component

Copies

Var4

Var3

Originals

Var2

Var1

Node1

App2

Applications

App1

Fig. 1 Informal system overview

The task of keeping variable copies updated with the values of their match-
ing variable originals is handled by the communication component that exists in
each node. Messages about variable values are exchanged among the communica-
tion component instances through the communication bus. The work presented in
this paper focuses on the requirements for the communication component. The ap-
proach we present allows a collection of requirements to be represented formally
in combination with formal representation of the behavioral assumptions about the
environment of the system. We will use the following requirement (Req. 1) as an
example: For any variable copy vC related to a variable original vO, the following
must be satisfied if a warm-up period of 10000 ms. since system start has passed: if
the value of vO has been stable (i.e. the same) for a coherent period of least 50 ms.,
vC must have the same value. The maximum delay allowed before the value of vC
reflects that of vO is 500 ms.

Expressing Environment Assumptions and Real-time Requirements 81

2 The CPN Model

This section presents an approach to developing a CPN model that contains a formal
representation of (1) the assumed behavior of the environment of the communica-
tion component, (2) the real-time requirements, and (3) a possible solution satisfying
the requirements (i.e. an initial design for the communication component). The ap-
proach extends previous work [3, 10, 11] by the introduction of explicitly expressed
real-time requirements and validation of these.

CPN is a formal modeling language with a graphical representation. It is a high-
level extension of standard Petri Nets to which it adds: complex data types for token
values (allowing distinction of tokens and modeling of data manipulation), a pro-
gramming language for guard expression and data manipulation, hierarchical con-
structs, and real-time modeling through timestamps on tokens. The CPN language
is supported by CPN Tools [1], which provides a graphical modeling environment
where models are developed and experimented with through simulation and state
space analysis. The main concepts of the modeling language will be introduced in
the description of the CPN model in this section. Further details are found in [7].

The CPN model presented here is hierarchical and has the structure of a tree in
which the nodes are modules and the edges are connections between modules. The
root node is called the top module and is shown in Fig. 2. The module contains four
substitution transitions (double-edged rectangles) connected by arcs to four places
(ellipses) through which interaction and observation is possible. Both the arcs and
the places carry inscriptions. A substitution transition represents an instance of a
module which may be found in multiple instances throughout the model. A module
is itself a CPN structure that may contain further levels of substitution transitions
which allows the model to be structured using many hierarchical levels. In the top
module, the substitution transitions represent domains. The places represent col-
lections of shared phenomena about which the domains communicate. A shared
phenomenon is either a state or an event, which is controlled by exactly one domain
but may be observed by multiple domains. A domain controls a phenomenon if it
causes it to happen in the case of an event or cause it to change in the case of a state.

Fig. 2 The top module

Communication Bus (Environment Assumptions)
CommunicationBus

Communication Component (Solution)
CommunicationComponent

Requirements

Requirements

Applications (Environment Assumptions)
Applications

sv2

messageout()

sv2

ev2

messagein()

ev2

sv1

copies()

sv1

ev1

originals()

ev1

Applications

Requirements

CommunicationComponent

CommunicationBus

3 6

63

82 Simon Tjell and João M. Fernandes

The shared phenomena places carry two kinds of inscriptions: color set defini-
tions (ev1, sv1, ev2, and ev2) and initial markings (originals(), copies(), etc.).
The color set definition of a place specifies the data type of the tokens that are al-
lowed to exist in the place. The names of the color sets match those defined in the
reference model introduced in [4]: the color sets ev1 and ev2 contain visible phe-
nomena controlled by the environment (variable originals and incoming messages
from the bus respectively) while the color sets sv1 and sv2 contain those controlled
by the communication component (variable copies and outgoing messages from the
nodes respectively). In addition to the visible/shared phenomena, all domains con-
tain collections of hidden and locally controlled phenomena. The initial marking
definition of a place tells which tokens will exist in a place in its initial state - for
state phenomena, this initialization value will be the initial value of the state and for
event phenomena it will typically be a token value representing the information that
no events of a given type have been generated before the initial state of the model.
The actual contents of these phenomena places will be introduced in Section 2.1.

The top module captures a description of how we have chosen to structure our
assumptions about the environment in which our problem and its possible solution
is found. The top level module is structured in the same way as a Jackson Problem
Diagram [6] and can be described in the following way: the problem is to develop
a communication component that, given the environment assumptions about the be-
havior of the applications and the communication bus, performs the task of keeping
the variable copies updated to match the changing values of the variable originals
in a way that satisfies the requirements.

The top module contains a representation of the requirements connected to two
shared phenomena places (ev1 and sv1). This connection implies that the require-
ments be expressed in terms of the phenomena found in ev1 and sv1 - the variable
originals and copies. Implicitly, this tells us that requirements cannot be expressed
in terms of messages being exchanged through the communication bus since the
substitution transition has no connection to these phenomena places. The top mod-
ule represents the structure of the domains seen from one node and the modeling
language allows us to use this structure to represent the behavior of a parameterized
number of concurrently operating nodes.

2.1 Modeling Shared Phenomena and Environment Assumptions

The shared phenomena allow interaction among domains. The trivial approach to
modeling the shared phenomena would be to define data types for events and states
of different kinds and then represent each instance of a state or an event as an in-
dividual token in a shared phenomena place. In fact, we have done so in previous
works [3, 10]. In the work presented here, we express requirements over timed traces
of phenomena observations (changes to states or occurrences of events) and we
therefore need a slightly richer representation of shared phenomena in the places,
namely one that preserves the history of phenomena observations rather than just

Expressing Environment Assumptions and Real-time Requirements 83

Listing 1 Definition of the Trace color set
1 colset NodeID = int with 1..NumberOfNodes;
2 colset State =
3 union VariableOriginalValue:VariableValue+VariableCopyValue:VariableCopyValue;
4 colset Event =
5 union MessageInValue:VariableValue + MessageOutValue:VariableValue;
6 colset PhenomenonID = union
7 VariableOriginalID:VariableID + VariableCopyID:VariableID +
8 MessageOutID:VariableID + MessageInID:VariableID;
9 colset Phenomenon = union State:State + NewEvent:Event + OldEvent:Event;

10 colset TimedPhenomenon = product Phenomenon * Timestamp;
11 colset Phenomena = list TimedPhenomenon;
12 colset Trace = product NodeID * PhenomenonID * Phenomena timed;

snapshots. For this purpose, the Trace color set has been defined (Listing 1). This
listing is an example of declarations in the CPN model expressed in terms of the
built-in functional language CPN ML - a variant of Standard ML. The Trace color
set is a superset of all the color sets found in Fig. 2 (ev1, sv1, etc.).

The listing contains the definitions of the two kinds of phenomena (states and
events), introduces timestamped phenomena, and defines a trace to be a triple con-
taining (1) the identity of a node, (2) the identity of a phenomenon, and (3) a list
of timestamped phenomena occurrences/changes. The PhenomenonID color set is a
union type of a collection of different identifiers. This is practical since some phe-
nomena may need to be identified using an index and a name, while others may be
more appropriately identified using an enumerated value or a string. The union type
approach is also used for the phenomenon values: this is again practical because it
makes it possible to use different data types of varying complexity to represent dif-
ferent phenomena. An event is either old or new: a NewEvent element is used to rep-
resent an event that has occurred but has not yet been observed while an OldEvent

represents an event that has been observed. This makes it possible to ensure that
the occurrence of an event is only detected once in each observing node. When an
observable phenomenon occurs in a domain, this is recorded by adding an element
to one or more trace tokens (one token exists per observing node).

The addition of elements to traces is performed using two functions state and
event. In the case of the occurrence of an event, a NewEvent element is added. In the
case of a state change, a new element is only added if the state indeed changed to a
new value. In both cases, the new element is associated with a timestamp indicating
the model time at which the phenomenon occurred.

Following the structure found in Fig. 2, the environment of the communication
component consists of the applications and the communication bus. The commu-
nication component interfaces with these two domains through phenomena related
to the variables (originals and copies) and messages (outgoing and incoming) re-
spectively. A description of the structure of the environment is captured in the top
module (Fig. 2), while description of the assumed behavior of the domains environ-
ment is found in the Applications and CommunicationBus modules.

The Applications module (not shown) describes assumptions about how the
applications in the nodes write new values to local variable originals and about the
timing of these write operations. The CommunicationBus module (Fig. 3) describes

84 Simon Tjell and João M. Fernandes

assumptions about how messages are exchanged between nodes with potential loss
of messages in the case of physical connection problems. The module is connected
to the top module through the places marked by

Req1

Satisfied

I/OI/O labels. These places are con-
nected to the places with matching names in the top module. In this way, it is possi-
ble to describe the details of the communication bus inside the module while avoid-
ing too many possibly confusing details in the top module. Whenever a message is
sent by a node (modeled in the Communication Component module), a NewEvent

element is added to a trace token found in the sv2 place. The NodeID in this trace
token matches that of the sending node. When the element is added to the trace
token, it becomes visible to the CommunicationBus module through the sv2 place.

The semantics of CPN is based on the notions of enabling and occurrence. For
example, the Detect Message transition (Fig. 3) is said to be enabled whenever
its input place (sv2) contains a token that satisfies the constraints of the transition:
(1) the pattern expression in the input arc, and (2) the guard expression. The guard
expression is seen in brackets in the left-hand side of the transition and it speci-
fies that the transition can only become enabled if the trace contains a new (not
yet observed) event. When the transition is enabled it may occur (or fire) causing
the consumption of one token from the input place (sv2) and the production of a
collection of tokens in the output places (sv2 and Outgoing). The trace token is up-
dated and placed back in the sv2 place. The update consists in using the oldevent

function to change the type of the observed message event from a NewEvent to an
OldEvent element (preserving the parameter values). The consumption and pro-
duction of the token to the sv2 place can be seen as a data manipulation operation.
In the Outgoing place, a collection of tokens is produced by the broadcast func-
tion: one token representing a message for each receiving node - all with the same
variable value information. From the Outgoing place, tokens can be consumed in-
dividually by either the Loose Message transition (modeling a physical connection
being unavailable) or the Transmit Message transition (modeling a message being
successfully delivered to a receiving node). In the later case, the event function is
used to add a NewEvent element containing the variable information to the trace
related to the node in which the message is received.

The CommunicationBus module also shows an example of how assumptions
about the timing properties of the environment are modeled: the Transmit Message

transition carries a delay inscription (@+MessageDelay) indicating that each suc-
cessful transmission of a message takes MessageDelay time units. In this case, the

Fig. 3 Environment assumptions expressed in the CommunicationBus module

(n,vi,vv)

(n,vi,vv)

(n,
MessageInID(vi),
p)

event(n,MessageInID(vi),
p,MessageInValue(vv))

broadcast(n,vi,e)

(n,
MessageOutID(vi),
p)

oldevent(n,
MessageOutID(vi),
p,e)

Loose
Message

Transmit
Message

@+MessageDelay

Detect
Message

[newevent(p)=
SOME(e)] Outgoing

Message

ev2sv2sv2
I/OI/O

ev2
I/OI/O

3 6

Expressing Environment Assumptions and Real-time Requirements 85

delay is a constant (the average assumed delay), but for a more detailed modeling
of this assumption, a stochastic distribution function could have been applied.

The modules described here explicitly represent our assumptions about the be-
havior and structure of the environment in which the communication component
must provide a solution to the problem of maintaining the consistency between the
variables.

2.2 Expressing Requirements

In the introduction, Req. 1 was informally presented. Here, we will give an exam-
ple of how this requirements has been formally expressed in the CPN model using
the concepts of Duration Calculus [12]. As seen in Fig. 2, the model contains a
Requirements module (shown in Fig. 4). This module contains the expression of
all requirements about the communication component. The requirement transitions
are connected to the phenomena places using double-headed arcs. Informally, this
means that the transitions are observing but not modifying the contents of the phe-
nomena places - i.e. the requirements are expressed using transitions that monitor
the traces of the shared phenomena (in this case the variables).

The Requirements module contains the Requirements Satisfied place that
initially holds three tokens identifying three requirements (Req1, Req2, and Req3)
of which the first was described informally in the introduction. The module also
has three transitions with guards containing negations of the three requirements.
If a requirement is not satisfied, the respective transition will become enabled. If
a requirement transition occurs during the execution of the CPN model, the token
identifying the requirement is removed from the Requirements Satisfied place.
By monitoring the contents of this place after or during execution, we are able to
detect situations in which the solution fails to satisfy the requirements. We briefly
discuss how execution of the CPN model is used for experimenting with a possible
solution in Section 2.3.

As described in Section 2.1, the phenomena are recorded in traces in which the
elements carry timestamps that record when the phenomena happened - i.e. when a
state changed or when an event occurred. The requirements are expressed about the

Fig. 4 The Requirements module

Req3

Req2
1`(n,VariableOriginalID(vi),p)++
1`(n',VariableOriginalID(vi'),p')

Req1

[not (req3(p,p'))]

Requirement 2
(original duplicates)

[not (req2(vi,vi'))]

[not (req1(p,p',0,intTime()))]

RequirementID.all()

RequirementID

sv1
I/O

sv1ev1
I/O

ev1
I/O I/O

Requirements
Satisfied

(n,VariableOriginalID(vi),p)

(n',VariableCopyID(vi),p')

(n',VariableCopyID(vi),p')

(n,VariableOriginalID(vi),p) Requirement 1
(delay)

Requirement 3
(consistency)

63

3 1`Req1++
1`Req2++
1`Req3

86 Simon Tjell and João M. Fernandes

Listing 2 The requirement1 function

1 fun req1(trace1,trace2,t1,t2) =
2 let val original_trace = intervals(t1,t2,trace1)
3 val copy_trace = intervals(t1,t2,trace2)
4 val max_delay = 500 val min_length = 50 val warmup_delay = 10000
5 in forall original_trace (fn(t1,t2,v) =>
6 implies(t2>warmup_delay andalso t2-t1>=min_length
7 andalso upper_bound(copy_trace)>t2+max_delay,
8 exists copy_trace (fn(t1’,t2’,v’)=>
9 (t1’>t1 andalso v’=v andalso t1’-t1<max_delay))

10)) end;

variable copies and originals. For this reason, the transitions in the Requirements

module are connected to the phenomena places holding the traces about variable
copies and originals through interface places.

We now focus on the definition of Req. 1 seen in Listing 2. The req1 function
is used as a guard expression for the matching requirement transition in Fig. 4. The
function returns true if and only if Req. 1 is satisfied for a trace of a specific vari-
able original (trace1) and a trace of a matching variable copy (trace2) within
a timespan (t1...t2). Fig. 4 shows how pattern matching in the input arcs to the
Requirement 1 transition is applied to specify that the variable ID of the traces for
the variable original and the variable copy should match (bound to the variable vi)
while the node IDs (bound to n and n’) and the traces (bound to p and p’) may
(and will) differ. The satisfaction of Req. 1 is evaluated by comparing the trace of
a variable original to one trace representing a matching variable copy. For a given
variable ID, there is only one trace for a variable original while multiple traces
representing variable copies may exist (one per reading node). The evaluation is
performed one copy trace at a time and each evaluation is performed using the req1
function (Listing 2). Line 1 gives the signature of the function. In lines 2 and 3, the
intervals function is used to generate lists of intervals based on the traces for eas-
ier traversal. Line 4 defines constants used in the representation of the requirement
found in lines 5-10. The forall function is used for universal quantification over
the original trace (line 5). This value is a list of intervals defined by triples: start
time of an interval (t1), end time of the interval (t2), and the state value within the
interval (v). For all intervals (elements), the implies function is used to require that
if the interval ends after a warmup delay and is longer that min length and the last
interval of the copy trace ends after t2+max delay (lines 6-7), then there should
exist an interval in the copy trace ((t1’,t2’,v’)) that starts after t1 and has the
value v and starts within max delay time units after t1 (lines 8-9).

Informally, warmup delay is included to allow some update messages to be ex-
changed before the requirement to the maximum delay is required to be satisfied.
When this point is reached, any change to a variable original should be reflected in
all its variable copies within the period defined by max delay. The requirement is
softened slightly by specifying that the update is only required if the original value
remains stable for a period of at least min length time units. Hence, transient values
of an original are not required to be reflected in all matching copies.

Expressing Environment Assumptions and Real-time Requirements 87

2.3 Experimenting with Possible Solutions

Until now, following the suggestions of [5], we have deliberately avoided discussing
any concrete approaches to solving the problem of maintaining consistency through-
out the variables. Instead, we have focused on the environment assumptions and the
real-time requirements - i.e. constraints that apply to any possible solution we can
think of. Now, we will briefly discuss how the fact that the CPN model is executable
makes it possible to experiment with explicitly expressed solutions while monitoring
the satisfaction of the requirements through the effects on (part of) the environment.
A possible solution is expressed in the CommunicationComponent module of the
CPN model (Fig. 2). The details of this module are not shown.

The overall purpose of the communication component is to handle the task of
maintaining consistency between variable originals and their copies by exchanging
messages through the communication bus. Basically, two alternative approaches are
possible: event- and time-triggered communication. In an event-triggered approach,
the communication component transmits a message containing a new value when-
ever the value of a variable original is changed by a local application. In a time-
triggered approach, the communication component periodically transmit messages
containing the current values of local variable originals. In both cases, the values
of local variable copies are updated with the values found in incoming broadcast
messages received by the communication components.

We have experimented with a solution based on the principles of Soft State Sig-
naling [9] that combines a time-triggered messaging scheme with special validity
tags on the variables copies. A variable copy is tagged invalid if the periodic update
messages are not received for a predefined period of time.

In CPN Tools, the CPN model can be executed in an interactive manner - i.e.
allowing the user to select transitions to occur and their parameters. The model can
also be executed more freely in which case the tool will make free and fair choices
of transitions to simulate different scenarios. In addition to this, the monitor mech-
anism can be applied to give an alert (stop simulation) if a global state of the model
is reached where the Requirements Satisfied place (Fig. 4) does not contain all
requirement ID tokens. This is useful, because such a situation would indicate that
one or more of the requirement transitions have fired, meaning that a requirement
was not found to be satisfied in a state reached during the simulation of the model.
Whenever a requirement is found not to be satisfied during a simulation, the task is
to investigate whether the cause is to be found in the environment assumptions (or
their descriptions), too strict requirements, the proposed solution, or a combination.

3 Conclusions and Future Work

Several authors have already proposed the adoption of Petri Nets for modeling the
structure and behavior of distributed embedded systems, and in particular for veri-
fying real-time requirements. For example, [2] discusses a Petri Net-based approach

88 Simon Tjell and João M. Fernandes

to verification of embedded systems and introduces a systematic procedure to trans-
lating the descriptions into linear hybrid automata in order to use existing model
checking tools. A complete design flow based on high-level Petri Nets for real-time
embedded systems for modeling both discrete and continuous parts of the systems
by the event-based Petri net semantics is presented in [8]. The Petri Net model is
used for formal verification and hardware/software partitioning purposes. This pa-
per extends (and generalizes) the results presented in [11] and also suggests the use
of a unique language based on Petri Nets for modeling the system and its environ-
ment, but the focus is on validating the real-time requirements expressed in terms of
the required effects on the environment caused by the system.

Future work includes making the structuring approach introduced here more gen-
erally applicable by formally defining it as a structural subclass of CPNs with un-
modified semantics. Such a definition could also serve as a foundation for the def-
inition of refinement operations that could be used for refining requirements into
specifications taking the environment assumptions into account. It would also be in-
teresting, for example, to look at how environment entities could be modeled using
CPN representations of differential equations based on the principles of [8].

References

1. CPN Tools. http://daimi.au.dk/CPNTools.
2. L. A. Cortés, P. Eles, and Z. Peng. Verification of Embedded Systems Using a Petri Net Based

Representation. In ISSS 2000.
3. J. M. Fernandes, J. B. Jørgensen, and S. Tjell. Requirements Engineering for Reactive Sys-

tems: Coloured Petri Nets for an Elevator Controller. In APSEC 2007.
4. C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave. A Reference Model for Requirements

and Specifications. IEEE Software, 17(3), 2000.
5. I. J. Hayes, M.A. Jackson, and C.B. Jones. Determining the Specification of a Control System

from that of its Environment. In FME 2003.
6. M. Jackson. Problem Frames — Analyzing and Structuring Software Development Problems.

Addison-Wesley, 2001.
7. K. Jensen, L. M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for Modelling

and Validation of Concurrent Systems. STTT, 9(3-4), 2007.
8. B. Kleinjohann, J. Tacken, and C. Tahedl. Towards a Complete Design Method for Embedded

Systems Using Predicate/Transition-Nets. In CHDL 1997.
9. S. Raman and S. McCanne. A Model, Analysis, and Protocol Framework for Soft State-Based

Communication. In SIGCOMM 1999.
10. S. Tjell. Distinguishing Environment and System in Coloured Petri Net Models of Reactive

Systems. In SIES 2007.
11. S. Tjell. Model-Based Analysis of a Windmill Communication System. In DIPES 2006.
12. C. Zhou, C. A. R. Hoare, and A. P. Ravn. A Calculus of Durations. Inf. Process. Lett., 40(5),

1991.

The Components Data Flow Machine: An
Intermediate Modeling Format to Support the
Design of Automobiles E/E Systems
Architectures

Augustin Kebemou and Ina Schieferdecker

Abstract The design of the architectures of automobiles E/E (Electric/Electronic)
systems consists in the allocation of the hardware platform and the distribution of
the computing and the communication loads of the application software within the
allocated hardware. This operation is called the partitioning. Following the actual
model-driven design schemes, the input of the partitioning is generally a functional
specification of the system under development in the form of communicating soft-
ware components that must be mapped on the allocated hardware platform. How-
ever, even though these models are sufficient to describe the structure of a system,
they are not good enough to support a CAD-supplied partitioning. They lack the
facilities needed to support the analysis of the data flow and to investigate the close-
ness between the elements of the specification, thus to support the mapping. In this
paper, we define the Components Data Flow Machine (CDFM), a modeling format
that is defined to support the design of automobiles E/E systems architectures. The
CDFM defines the semantics of a synthesis model that results from a transformation
of standard models like SysML, EAST ADL or AUTOSAR models.

Key words: automotive systems, architecture, design, partitioning, mapping

1 Introduction

With the increasing demand for electronic-actuated features in automobiles, two so-
lutions are broadly proposed to optimize the cost of new vehicles. The first solution

Augustin Kebemou
Fraunhofer Institute for Software and Systems Engineering (ISST)
Mollstrasse 1, 10178 Berlin, Germany

Ina Schieferdecker
Fraunhofer Institute for Open Communication Systems (FOKUS)
Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

Please use the following format when citing this chapter:

Kebemou, A. and Schieferdecker, I., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded
Systems: Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 89–100.

90 Augustin Kebemou and Ina Schieferdecker

proposes to develop flexible and particularly portable automotive software compo-
nents. The second solution is to reduce the amount of hardware in automobiles’ E/E
systems. In reality, these two options are complementary since the efficient usage
of the hardware resources is achieved by both a goal-oriented definition of the ar-
chitecture of the E/E system and an advantageous resource allocation policy. This is
the duty of the partitioning. The optimal partitioning must minimize the quantity of
processing units, memories and cables that are needed to execute the functionality
of the system, to store its data and its software code and to realize the inter-device
communication. The partitioning involves three activities: The allocation, the map-
ping and the deployment. The allocation is concerned with the design of the physical
configuration of the system. This consists in the definition of the number of devices
(ECUs, sensors, actuators, gateways), the definition of their individual equipments
(processing units, memories, internal buses, etc.), their positioning within the phys-
ical system (i.e. the topology of the system) and the choice of the communication
media and protocols for the inter-device communications. The mapping deals with
the distribution of the working load of the system’s application among the available
devices while the deployment is the task of distributing the individual computation
power of the devices among the tasks and assigning the available memory space and
the intra-devices communication bandwidths to the system’s data. During the map-
ping, each functional component of the system is assigned to one or several devices
depending on the required redundancy grade of its implementation. Two functional
components that are assigned to different devices must communicate through the
inter-devices communication channels. As these are mostly bus systems running
frame-oriented communication protocols like CAN, MOST, FlexRay, LIN, etc., the
mapping must also pack the inter-devices communication data in the communica-
tion frames in the most economical way.

Thus, a good partitioning must assign closely related components, e.g. highly
communicating components, to the same device in order to minimize the inter-
devices communication and maximize the hardware sharing [1]. Currently, this is
done manually by highly experienced system architects. They usually add the new
software components on the existing system without changing the precedent con-
tents of the devices. When the existing devices are overloaded, they generally de-
cide to add new devices. This optimistic approach of the partitioning is justified by
the fact that the existing systems are well-functioning and reliable configurations
with stable communication matrices. A new design of the system’s architecture is
practically equivalent to a design from scratch, economically unsupportable in this
fast evolving industry where the time to market is vital for each OEM. But, the di-
rect consequence of this practice is the excessive number of buses and processors
installed in the vehicles. Moreover, without efficient CAD techniques to support
the partitioning, unexperienced designers cannot expect to design good systems. A
CAD-supported partitioning will allow automotive systems architects to investigate
and compare different architectural options. This necessitates a global view of the
system’s specification and a reasonable degree of portability of the software com-
ponents at the system-level. With the implementation of the concepts developed
within the AUTOSAR[2], standard and platform-independent software components

The Components Data Flow Machine: An Intermediate Modeling Format 91

will enlarge the solution space of the partitioning of automobiles’ E/E systems and
thus, will allow the consideration of much more architectural options and enable
the design of more cost-sensitive E/E systems than today. The E/E design can take
advantage of this only if it is provided CAD-support for the partitioning.

2 Problem Presentation

However, a CAD-supplied partitioning tool needs a model that can enable the anal-
ysis of the data flow and highlight the closeness between the elements of the speci-
fication. This is not provided by the mostly used modeling formats, e.g. SysML[3],
EAST ADL[4] and AUTOSAR[5] models. Although these prominent meta-models
optimally describe the logical structure of E/E systems, they cannot be used to syn-
thesize the inter-components communication or to determine the closeness between
the elements of a model as it is needed to make the mapping decisions. For example,
there are generally multiple connectors and interfaces joining two communicating
components, making the tracing of the communication paths extremely difficult for
a computer system. To solve this problem, we defined a modeling solution called
the FN -for ”Functional Network”- that copes with the deficits of the usual auto-
motive modeling solutions concerning the requirements for a CAD-supplied parti-
tioning such as the screening of the communication paths and the traceability of the
communication data. The FN is an intuitive modeling solution that inherits the con-
cepts of interconnected software components with ports and interfaces from UML,
SysML and EAST ADL, plus the atomicity and portability principles defined within
the AUTOSAR. But, in contrast to an AUTOSAR VFB (Virtual Functional Bus), the
FN interfaces allow clear screening of the communication paths and an easy tracing
of the data flowing on each connector by transforming for example the branched
connectors found in a VFB into single P2P connectors.

Each FN model can be formally defined with a quintuple 〈F,R,P, I,C〉 as fol-
lows: F (Functions) is the set of all the behavioral components in the model,
i.e. F =

{
F1,F2, ...,Ff

}
where each Fi represents a functional component, i, f ∈

N; R (Repositories) is the set of all the data components in the specification,
i.e. R = {R1,R2, ...,Rr} where each Ri represents a data component, i,r ∈ N; P
(Ports) is the set of input and output ports, i.e. P =

{
P1,P2, ...,Pp

}
i, p ∈ N with

P = IPorts⊕OPorts (i.e. Input ports ⊕ Output ports); I (Interfaces) is the set of all
the port interfaces in the specification, i.e. I =

{
I1, I2, ..., Ip

}
where each Ii represents

the interface of the port i, i, p ∈ N; C (Connectors) is the set of all the connectors in
the specification, i.e. C = {C1,C2, ...,Cl} where each Ci represents a connector, i, l ∈
N; Each component Fi or Ri is defined by its internal behavior beh and its interface
Int, i.e. each component is completely defined by a tuple < beh, Int > with Int ⊆ P
and beh is defined by the runnables and the RTEEs (Runtime Environment Events);
Each port Pi is defined by its behavior beh and its interface Int, i.e. Pi =< beh, Int >
with Pi.Int ∈ I; For each connector Ci, ∃src ∈ OPort, dst ∈ IPort and Int so that
Ci =< src,dst, Int > where Ci.src is the port source of the connector Ci, Ci.dst is

92 Augustin Kebemou and Ina Schieferdecker

the port destination of the connector Ci and Ci.Int is the set of the data that might
flow on Ci; Ci.Int = Ci.src.Int ∩Ci.dst.Int.

Due to its P2P conception of ports inter-connections, the FN enables the pro-
duction of specifications that are more compliant with the requirements of an auto-
matic partitioning than the standard modeling solutions. Nevertheless, the FN does
not provide any advanced feature to synthesize the communication and extract the
closeness values between the elements of a specification. This can be achieved with
a formal representation format on which efficient mathematical tools can be used to
analyze and quantify the relationships between the elements of the functional spec-
ification of a system. We call our solution the ”Components Data Flow Machine
(CDFM)”. The CDFM is a synthesis model that enables the automatic analysis of
the inter-components communication, the determination of the closeness values be-
tween them and the assignment of the exchanged data to the communication frames.
A more detailed specification of the requirements for such a synthesis model con-
cerning the partitioning of automobiles E/E systems is given in section 3. Then, the
CDFM and the rules that govern the translation of FN models into CDFM models
are defined in section 4 and illustrated in section 7 while the annotations of CDFM
models and their formal definition are presented respectively in section 5 and section
6.

3 Requirements for the synthesis model

The usefulness of a synthesis model is given by its ability to support the intended
design task, in the present case, the partitioning. This includes the ability to reflect
the system architecture as given in the FN input model, the ability to specify the
information that is needed for the partitioning and the ability to enable rapid estima-
tion of the partitioning metrics, in particular the closeness between the components.
Reflecting the system architecture requires that the synthesis model must be at least
at the same level of granularity with the input model. Enabling rapid metrics estima-
tions requires that as much information as possible is known before the partitioning
begins. Depending on the type of representation used, the formal representations
that meet the requirements for the synthesis model can be roughly classified in two
groups: Those based on FSMs or Petri nets and those based on graphs. In contrast to
graph-based representations that consider a unique system state, FSMs [6] and Petri
nets-based representations [7] are powerful in modeling and verifying the dynamics
of a system. But, they are obviously not the best representation forms when the ar-
chitecture of the system is important. The main kinds of architecture-oriented forms
of FSMs used in the design of embedded systems include the FSM with data paths
(FSMD) [8] and the FSM with Coprocessors (FSMC) [9]. Even these forms cannot
reproduce the system’s architecture in a useful way. Moreover, they considerably
suffer from the state explosion problem.

The most usual graph-based systems representations include data flow graphs
(DFG)[10], control flow graphs (CFG), data control flow graphs (DCFG)[11] and

The Components Data Flow Machine: An Intermediate Modeling Format 93

task graphs. DFGs are well-featured to describe the data dependencies. CFGs are
well-suited to model control-oriented systems, but they provide restricted facilities
for the data flow analysis. CDFGs extend the DFG with control nodes. They pro-
vide good models for data flow oriented applications whose the control information
is important. Task graphs are similar with DFGs in their structure. But, in opposition
to DFGs, special types of task graphs may be cyclic or undirected [10, 12]. Like in
[13], various special task graph-based modeling formats have been used for prob-
lems that are similar to the one presented in this work. In [14], a directed task graph,
called access graph, is used to model the accesses (i.e. data exchange) between the
functional components of the system, while a similar, but undirected graph, called
communication graph is used in [15] to model the communication between a set
of tasks. These solutions yield static models that however effectively reproduce the
structure and the communication of a system, providing a good basis for our syn-
thesis model.

4 The CDFM

The synthesis model is intended to specify the components of a system, their com-
munication and every relevant relationships between them. We defined it as a task
graph (V,E,Ω ,S) in with each node vi ∈ V represents a behavioral or a data com-
ponent of the corresponding FN model. In contrast to FN models, it exists only one
edge between two nodes of a CDFM model. Each edge ei j = (vi,v j) = (v j,vi) ∈ E
materializes the communication between the FN components represented by vi and
v j. The semantic of such a node is reduced to: ”These connected nodes exchange
data in some way” , i.e. the direction is ignored by the edge itself. However, trans-
forming multiple and oppositely directed connectors into a single undirected link
introduces two problems: Firstly, we need a convenient interpretation of the orig-
inal connections that will allow to properly capture the data shared between the
connected nodes. Secondly, as the edges are undirected, the direction of the com-
munication must be specified somewhere else.

We solved this problem by introducing the concept of tokens in the CDFM. A
token models a data object that is exchanged between the nodes of a CDFM model.
The set of the tokens flowing around the graph is Ω . A token T k

i j ∈Ω represents the
data object k that is exchanged between two nodes vi and v j. A token is unbounded
in the dimension and is not supposed to contain any additional information such as
the beginning of the token or the end of the token. Independently of the connector
through which a data object k is exchanged within a FN model, the corresponding
token T k

i j is associated with the edge ei j that connects the nodes vi and v j. Thus, the
set of the tokens associated with an edge models the intensity of the communica-
tion between the two nodes. As the edges are undirected, we model the direction
of the communication in the tokens, i.e. the direction of a token defines the sense
of its transfer. This definition of the CDFM leads to the following straightforward
transformation of FN models into the corresponding synthesis models:

94 Augustin Kebemou and Ina Schieferdecker

• Each component of a FN model is transformed into a node,
• Each connection of a FN model is transformed into an edge and
• Each data object exchanged between two components of a FN model is trans-

formed into a token.

Note that several mechanisms can be used on this basic modeling format to de-
scribe the data exchange procedure. For example, a node can send data by placing it
on the dedicated edge, i.e. the token is addressed exclusively to the node connected
at the other end of this edge, or the sender can just put the token on its output where it
will be collected by the destination node. These two mechanisms are fundamentally
different concerning the resulting behavior of the system. The first one processes
a peer-to-peer communication while the second one, if not enhanced with restric-
tive routing rules, is merely adapted to realize broadcast communication since each
component that is related with the sender can access the data that is on the sender’s
output port. Note that it is also conceivable that the sender node pushes the data to
the destination and so synchronous and asynchronous communication schemata can
be designed. Defining such mechanisms would introduce a dynamical dimension in
the specification of the communication in CDFM models. But, as the CDFM is yet
not intended to support the simulation, the dynamics of the data exchange and the
routing mechanisms will not be discussed in this paper. However, we agree that a
token is created as soon as the corresponding data object is emitted. We then say that
the token is available. Thus, a token is available at the date of its creation. Note that
a token is available solely means that the token can be transfered. However, the date
at which a token is sent is not absolutely the date at which it is available. Depending
on its freshness requirements, a very hasty token must be transfered as soon as it is
available while the transfer date of a less hasty token can be delayed. These concepts
are introduced in the CDFM to support the scheduling of the communication and to
control the occupation of the communication buses.

In addition to the technical factors of cost optimization such as the communi-
cation and the resource usage, the design of an E/E system typically underlies a
full range of constraints and strategic concerns that arise from the commercial, the
technological, the organizational circumstances of the design as well as the procure-
ment, the production issues, etc. Consequently, some components of the functional
model might be required to run on the same device while others are required to run
on different devices, e.g. for safety reasons. These relationships between the compo-
nents typically have heavy consequences on the partitioning and must be specified
in the synthesis model. We model them by means of needs and excludes relations:

• Two nodes vi and v j are in a needs relationship, i.e. needs(vi,v j) is TRUE, if vi
and v j must be implemented on the same device;

• Two nodes vi and v j are in an excludes relationship, i.e. excludes(vi,v j) is TRUE,
if it is forbidden to implement vi and v j on the same device.

The needs and excludes relationships are also defined between the tokens. Note that
several similar relationships can be defined on CDFM models. They are managed
within the set S. So defined, the CDFM enables the synthesis of the communication,
but it does not yet contain the information required to guide the partitioning, i.e. the

The Components Data Flow Machine: An Intermediate Modeling Format 95

information on the basis of which the clustering decisions must be made during the
mapping and those through which the cost and the quality of the resulting partition
can be investigated. This is provided by means of attributes.

5 Annotations for the CDFM

Annotations for the nodes: The performance and the cost of a node are determined
by its execution time, the frequentness of its execution, the size of the resulting
software code or the size of the hardware that should be needed to implement the
component. Assuming that a particular hardware unit or a family of hardware units
have been identified to implement or to store each component so that the memory
needs for the code size and for the stacks or the heaps of its runnables are known (or
can be estimated), the attributes of the nodes of a CDFM model include:

– The software size (swSize): The total amount of memory required to store
the code and the data of the corresponding FN component when implemented in
software.

– The hardware size (hwSize): The total amount of hardware components that
would be used to implement the function of the corresponding component.

– The execution rate (eR): The maximum of the execution rates of the runnables
of the corresponding component. The execution rate of a runnable is the mean num-
ber of times that it is executed during an activation time of the system.

– The priority (prio): The priority order of the most prioritized runnable of the
corresponding component.

– The execution time (eT): The ”sum” of the execution times of the runnables of
the corresponding component.

Annotations for the edges: The attributes of the edges of a CDFG model in-
clude:

– The weight (T): The set of tokens that flow over it during an activation period
of the system.

– The access frequency (accFreq): The access frequency of the most accessed
connector within the corresponding FN connection.

– The constraints (cons): Are given by all the consistent sets of all the constraints
on the connectors of the corresponding FN connection. This include e.g. the latency,
the reliability, the security, the safety constraints, etc.

Annotations for the tokens: The most relevant attributes of the tokens include:
– The direction (dir): It defines the sense in which the token is transferred. It is

given by the source and the destination nodes of the token.
– The resolution or dimension (res): The number of bits that is needed to encode

the corresponding data object.
– The frequency (freq): The mean frequency of emission of the corresponding

data object.
– The priority (prio): The priority level that the corresponding data object enjoys

in the occupation of a given communication channel.

96 Augustin Kebemou and Ina Schieferdecker

– The date of occurrence (occur): The date at which the token is available.
– The freshness requirements (fresh): Determine the latest date at which the token

must be sent.
– The constraints (cons): The data objects, thus the tokens, may underly some

constraints concerning for example their freshness, their safety, their security level,
etc.

6 Formal definition of the CDFM, model transformation

Given a FN model A = 〈F,R,P, I,C〉 of the functionalities of a E/E system with the
components M = {M1,M2, ...,Mk}= F ∪R, the corresponding synthesis model is a
graph G = (V,E,Ω ,S), where V = M is the set of the nodes, E is the set of the edges
ei j = (vi,v j) = (v j,vi), Ω is the set of the tokens and S is the set of the relationships
induced by the constraints and the strategic concerns of the design over the set of
the nodes and the set of the tokens, i.e.

– for each Mi ∈M there is a corresponding node vi ∈V ,
– for each data object k exchanged between two components Mi and M j there is a

corresponding token T k
i j or T k

ji ∈Ω ,
– each relation between two components (resp. two data objects) also exists be-

tween the corresponding nodes (resp. the corresponding tokens), and:

• Each node vi = 〈swSize,hwSize,eR, prio,eT 〉 where vi.swSize (resp. vi.hwSize)
is the software (resp. the hardware) size of vi, vi.eR is the execution rate of vi,
vi.prio is the priority of vi, vi.eT is the execution time of vi.

• Each edge ei j = e ji = 〈T,accFreq,cons〉 where ei j.T = Ti j ∪Tji is the weight of

the edge ei j, i.e. of the edge e ji, where Ti j =
{

T k
i j,k ∈ N

}
is given by the set of

the tokens transferred from node vi to node v j and Tji =
{

T k
ji,k ∈ N

}
is given by

the set of the tokens transferred from node v j to node vi (note that ei j.T = e ji.T
for all i, j ∈ N but Ti j 6= Tji for each given pair of nodes i, j), ei j.accFreq is the
access frequency of the edge ei j, i.e. of e ji and ei j.cons is the set of constraints
on the edge ei j, i.e. on e ji.

• Each token T k
i j = 〈dir,res, f req, prio,occur, f resh,cons〉 where T k

i j.dir is the di-
rection in which T k

i j flows, (the direction is also given by the foot notation i j of
the token), T k

i j.res is the resolution of the token T k
i j, T k

i j. f req is the emission rate
of the token T k

i j, T k
i j.prio is the priority of the token T k

i j, T k
i j.occur is the date of

occurrence of the token T k
i j, T k

i j. f resh are the freshness requirements on the token
T k

i j, T k
i j.cons is the set of the constraints and requirements on the token T k

i j.

The metric that is used to determine the weight of the edges of CDFM models
is defined as follows: Given a FN model A and its corresponding CDFM model
G, consider the operator widthi j that defines the set of connectors of A that are

The Components Data Flow Machine: An Intermediate Modeling Format 97

represented by the edge ei j in G (i.e. these are the connectors that relate Ai with A j).
Assume that the operator srcConnectors(Ai) returns the set of connectors for which
Ai is the source and the operator dstConnectors(Ai) returns the set of connectors for
which Ai is the destination, i.e.:

srcConnectors(Ai) = {c ∈C|c.src ∈ Ai.Int} and
dstConnectors(Ai) = {c ∈C|c.dst ∈ Ai.Int}, then
widthi j = srcConnectors(Ai)∩dstConnectors(A j) and thus, given two nodes vi

and v j of G, the weight of ei j (i.e. the set of tokens transferred over the edge ei j) is:
ei j.T = Ti j ∪Tji =

⋃

c∈widthi, j

c.Int

7 Applications

The figures 1 and 2 illustrate the results of the transformation of FN models into
CDFM models. Figure 1 shows a part of the FN model of the ACC (active cruise
control) functionality and figure 2 shows the corresponding CDFM model. In the
CDFM version, the relationships between the components are clearly identifiable.
Each connection is materialized by a single edge and the exchanged data objects are
specified in terms of tokens associated each with the corresponding edge so that the
magnitude of the communication between the components can be easily estimated
and compared with each other.

Fig. 1 The ACC FN model

The following simplified example illustrates the transformation of a FN con-
nection in a CDFM edge. Suppose that two FN components are connected with
a sender-receiver port interface, i.e. an interface through which they can exchange
data elements, and a client-server interface, i.e. an interface through which operation
calls can be initiated. Every 10 seconds, the first component A1 sends for example
the actual distance covered since the very first starting of the system (as read from
the odometer) to the second component A2. This is done through the sender-receiver

speed_actual
speed_regulation_state

acceleration_min
set_distance_min

potencial_stationary_objects
regulation_obl_objects

objects_sto

display_collision_alert
display_driver_reation

max_acceleration
obstacle_nomination

nominal_distance

speed_actual
speed_lateral_state
acceleration_angle
nominal _distance
acceleration_min
obstacle_detection

objects_sto

Curve treatment
acceleration_limit_ped
acceleration_limit_eng

display_speed
limit_accelerationSpeed control

overall

speed_actual
speed_regulation_state

acceleration_min
speed_odometer
speed_selection

distance_selection

tempomat_setting

display_distance
set_distance_min display_max_speed

speed_selection

Max speed setting

Security distance
setting

Obstacle
screening

object_nomination
speed_angle_wheel

radar_signal
speed_actual

object_found
state_radar_sensor

hor_just_state
ver_just_state

object_found

speed_angle_wheel
radar_signal
speed_actual

Lane
determination

lane_attributes

potencial_stationary_object
regulation_obl_objects

objects_sto

Obstacle
identification

Speed control
retarder

98 Augustin Kebemou and Ina Schieferdecker

Fig. 2 The corresponding CDFM model

interface. Then following a time interval of 1 minute, A1 triggers A2 periodically to
calculate the total mileage, i.e. the total distance that has been covered by the vehi-
cle since the beginning of the actual trip. The mileage is communicated to A1 that
displays it to inform the user. This is done through the client-server interface. In
an AUTOSAR model, these two communication interfaces would be specified by
means of one sender-receiver and one client-server interface. But, in a FN model,
they are specified with three connectors as shown in figure 3. In fact, following the
semantics of the FN, as A1 must receive the result of the mileage computation done
by A2, the client-server interface will be modeled by two connectors, one from A1
to A2 and the other one from A2 to A1. In the end, the weight of the edge e12 in the
corresponding CDFM model shown in figure 4 is the set of data objects, i.e. tokens,
exchanged between A1 and A2, resp. between v1 and v2.

Fig. 3 The FN graphical representation of the mileage inquiry

Fig. 4 Graphical representation of the corresponding CDFM

Curve
treatment

Speed control
retarder

Lane
determination

Obstacle
screening

Speed control
overall

Obstacle
identification

Security distance
setting

Max speed
setting

objects_sto

object_found

state_radar_sensor

hor_just_state
ver_just_state

lane_attributes

speed_selection

set_distance_min

potencial_stationary_objects
regulation_obl_objects

objects_sto
nominal_distance

A1 A2

odometer_St

req_mileage

resp_mileage

A1 A2

odometer_State
req_mileage
resp_mileag

The Components Data Flow Machine: An Intermediate Modeling Format 99

8 Conclusion

The CDFM provides a powerful modeling format for the design of E/E systems ar-
chitectures. It is featured to support the analysis, the synthesis and the measurement
of the data flow for the mapping in very complex E/E system specifications at the
hight level. The representation of the components interconnections through single
unified edges with the corresponding data flow simplifies the measurement and the
comparison of the communication between the system components. The graph for-
mulation of CDFM models enables the application of usual graph partitioning algo-
rithms to realize the clustering. Due to the concept of directed tokens, the CDFM is
well-adapted to support the frames packing problem that is inherent to the resource
allocation in automotive communication networks such as CAN, MOST, LIN, etc.
Furthermore, CDFM models are obtained from a simple and straightforward trans-
formation of FN models that allow the implementation of CAD system to support
the transformation of FN into CDFM models. Thereto, the CDFM format allows
the design of flexible models, since CDFM models scalable and do not underly any
restriction on the granularity of their elements (nodes and tokens). They can easily
be enhanced to support the simulation.

References

1. A. Kebemou, “Partitioning Metrics for improved Performance and Economy of Distributed
Embedded Systems,” IESS proceedings on IFIP TC10 Working Conference, pp 289-300, Aug.
15-17 2005.

2. AUTOSAR, “www.autosar.org.”
3. Systems Modelling Language (SysML) Specification, OMG document: ad/2006-03-01; version

1.0 Draft.
4. EAST-EEA, “ Embedded Electronic Architecture. Definition of Language for Automotive

Embedded Electronic Architecture v. 1.02,” ITEA, Tech. Rep., 30.06.2006.
5. UML Profile for AUTOSAR; V1.0.0; AUTOSAR Adminstration web content, 28.04.2006.
6. M. von der Beeck, “A Comparison of Statecharts Variants,” in Proceedings of the Third Inter-

national Symposium Organized Jointly with the Working Group Provably Correct Systems on
Formal Techniques in Real-Time and Fault-Tolerant Systems ; pp 128 - 148, 1994.

7. M. Varea, “Modelling and Verification of Embedded Systems based on Petri Net oriented
Representations,” Ph.D. dissertation, University of Southampton, United Kingdom, Sep 2003.

8. D. D. Gajski and L. Ramachandran, “Introduction to High-Level Synthesis,” in IEEE Design
and Test of Computers, Vol. 11, No. 4, pp. 44-54, Dec, 1994.

9. A. Jerraya, H. Ding, P. Kission, and M. Rahmouni, “Behavioral Synthesis and Component
Reuse with VHDL,” Kluwer Academic Publishers, Boston/ London / Dortrecht, 1996.

10. E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data Flow Program
for Digital Signal Processing,” in IEEE Transactions on Computers, 75(9):1235-1245, Jan.
1987.

11. J. H. D. Herrmann, J. Henkel, and R. Ernst, “An Approach to the Adaptation of Estimated
Cost Parameters in the COSYMA System,” in Proceedings of the 3 rd International Workshop
on Hardware /Software Codesign - CODES/CASHE ’94, pp 100–107,, 1994.

12. S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Dataflow Graphs,
M. Norwell, Ed. Kluwer Academic Publishers, 1996.

100 Augustin Kebemou and Ina Schieferdecker

13. K. Koutsougeras, C. A. Papachristou, and R. R. Vemuri, “Data Flow Graph Partitioning to
Reduce Communication Cost,” in Proceedings of the 19th annual workshop on Micropro-
gramming; pp 82 - 91, 1986.

14. F. Vahid and D. D. Gajski, “SLIF: A Specification-Level Intermediate Format for System
Design,” in 1995 European Design and Test Conference (ED&TC ’95), 1995.

15. P. Arato, Z. A. Mann, and A. Orban, “ Algorithmic Aspects of Hardware/Software Partition-
ing,” in ACM Transactions on Design Automation of Electronic Systems, Vol. 10, Nr. 1, pp
136-156, Jan 2005.

On the Use of Software Quality Metrics to
Improve Physical Properties of Embedded
Systems

Ricardo M. Redin, Marcio F. S. Oliveira, Lisane B. Brisolara, Julio C. B. Mattos,
Luis C. Lamb, Flávio R. Wagner, and Luigi Carro

Abstract As software production achieves a growing importance in the embedded
systems world, quality evaluation of embedded software and its impact on physical
properties of embedded systems becomes increasingly relevant. Although there are
tools for embedded software design that improve software specification and veri-
fication, we are still short of a tool that supports the designer’s decisions on the
best design strategy regarding low level, physical characteristics like performance,
energy, and memory footprint, which are critical in the embedded domain. In this
paper, we provide an analysis of the correlation between software quality metrics
and physical metrics for embedded software. By means of experiments, we inves-
tigate the impact of software engineering best practices on embedded software and
show that software quality metrics can be used to guide design decisions toward
improving physical properties of embedded systems.

Key words: embedded software, software engineering, measurement, quality met-
rics

1 Introduction

Software engineers have been improving the software design process, and new
methods have been proposed for all software development steps, from requirements
specification to testing. New programming paradigms have arisen, such as Object-
Orientation (OO) and Aspect-Orientation (AO), as well as new development meth-
ods such as Model-Driven Engineering. A key factor of any engineering process
is the measurement and assessment of its characteristics; thus different metrics to
gauge and improve the quality of software products have been also proposed. Such

Ricardo M. Redin ·Marcio F. S. Oliveira · Lisane B. Brisolara · Julio C. B. Mattos · Luis C. Lamb ·
Flávio R. Wagner · Luigi Carro
Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Brazil

Please use the following format when citing this chapter:

Redin, R.M., et al., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded Systems:
Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 101–110.

102 Ricardo M. Redin et al.

metrics have been designed to evaluate concepts such as reuse, abstraction, cohe-
sion, coupling, and other software attributes.

In the case of embedded systems, differently from the traditional software do-
main, the main metrics currently in use are the physical ones, such as performance,
memory, energy, power, size, and weight, guided by design constraints. Other im-
portant and related metrics are reuse, time-to-market, and price. Although many
methodologies extract the physical metrics by proposing estimation or simulation
tools, the reuse and time-to-market factors are approached only through design
methods without direct or indirect evaluation.

However, the hard constraints typically found in embedded systems do not allow
the embedded system community to benefit from the advances in traditional soft-
ware methodologies As a result, the most critical challenge for Systems-on-Chip
(SoC) design is the software development process, which now accounts for 80%
of the cost of embedded system development. Notwithstanding the growth in the
use and application of software engineering methodologies in embedded software
development, the current practice of embedded software development is still unsat-
isfactory, in particular in industry .

Traditional (or classical) quality metrics provided by software engineers have
been successfully applied to improve the software quality for general-purpose sys-
tems, leading to improvements in reuse and time-to-market. Traditionally, these met-
rics help designers to increase properties such as abstraction and reuse, which are
good for time-to-market and maintainability. However, some best design practices
for conventional software cannot be applied to embedded software because they can
cause a negative impact on the physical metrics.

In this work, we investigate the relationship between traditional (classical) soft-
ware quality metrics and the relevant physical metrics for embedded systems. Dif-
ferent design decisions over the application model influence these metrics, thus we
intend to find out which software quality metrics are relevant for embedded software
design. Moreover, we show that the best design practices of traditional software can
negatively impact the physical properties of embedded systems, which implies that
some sacrifices in terms of reuse or maintainability are required to achieve a better
performance. Finally, we propose to use the knowledge about the relationship be-
tween quality and physical metrics to suggest modifications in the modeling solution
that will improve this solution regarding the physical metrics.

The remaining of this paper is organized as follows. Section 2 presents related
background work. Section 3 describes the software quality metrics selected for our
analysis. Section 4 presents the experiments conducted and our main results. Sec-
tion 5 concludes the paper and points out directions for future work.

2 Related work

There are several proposals of metric frameworks to evaluate the quality of the soft-
ware products in the software engineering literature, see e.g.. In the case of object-

On the Use of Software Quality Metrics to Improve Physical Properties 103

oriented software, a well-known survey of quality metrics is. In a more recent empir-
ical study of OO metrics, the authors apply several quality metrics to three different
projects and study the relationship between these metrics .

However, only a few works relating software quality measures for embedded
software products and physical metrics for embedded systems have been published
so far. For instance, in the authors describe the results of an experiment where four
different mobile devices running Role Playing Games applications are analyzed in
terms of software quality metrics and performance. The study shows that the de-
velopment effort can be greatly reduced without compromising the performance
through the reuse of platform and/or software components.

Our work focuses on measuring the correlation between object-oriented quality
metrics for traditional software design and physical metrics for embedded systems
design. We aim at finding out how the correlation between these metrics can be used
to aid a designer to improve the embedded software quality and still achieve better
results in terms of performance, memory, and power consumption. Moreover, we
show that one can use specific quality metrics as reliable predictors for the impact
of software design decisions on the final system physical metrics.

3 Software metrics

As the key of any engineering process is measurement, research efforts have pro-
vided many measures and metrics to evaluate processes, software products, and
projects in order to guide design decisions. A set of important metrics was selected
from and. Since there is no well-defined or widely accepted metrics classification,
we group these metrics by the attribute which the metric refers to, in order to facili-
tate the presentation. The classification and the used metrics are as follows.

Coupling: It measures the relationship between components, including calls, and
number of instances. High values of these metrics lead to an application that is
poor in encapsulation, reuse, and maintainability. The following metrics fit into this
category: Afferent Coupling (Ca), Efferent Coupling (Ce), and Instability (I).

Cohesion: It measures the degree to which the elements of a scope are func-
tionally related. The recommendation from software engineering is to use strongly
cohesive modules, which implement functionality that is related to one feature of the
software and requires little or no interaction with other modules. Lack of Cohesion
of Methods (LCOM) is the cohesion metric used in this work.

Extensibility and reuse: These metrics evaluate the possible reuse of a scope and
the capacity of it to be extended. Abstractness (A), Normalized Distance from Main
Sequence (Dn), and Depth of Inheritance Tree (DIT) are metrics used in this work.

Population (or size) metrics: These metrics measure the system in terms of at-
tributes, methods, and classes. They are also associated to complexity. In general,
higher values of these metrics mean an increase in memory footprint, lower perfor-
mance, and a more complex solution. Nevertheless, the distribution of the popula-
tion metrics has more impact on the dynamic behavior of the application. Almost

104 Ricardo M. Redin et al.

all population metrics count the number of a given structure inside the application
code. The used population metrics are: Number of Attributes (NOA), Number of
Classes (NOC), Number of Methods (NOM), Number of Packages (NOPK), Num-
ber of Parameters (NOP), Number of Static Attributes (NOSA), Number of Static
Methods (NOSM), and Total Lines of Code (TLOC).

Complexity: These metrics measure the hardness to understand or express the
problem/algorithm. They are related to alternative execution flows, element gran-
ularity/hierarchy, and nested execution. Metrics in this category are: McCabe Cy-
clomatic Complexity (VG), Method Lines of Code (MLOC), Nested Block Depth
(NBD), and Weighted Methods per Class (WMC).

There is a large number of software metrics. We have selected this set of metrics
because they are commonly and widely used in the software engineering domain
and there are several tools to automatically extract them from source code or even
from UML models. Surely, other metrics could be applied in this study, and other
important metrics are planned for future experiments.

4 Experiments

We have carried out experiments aiming at: (1) verifying the correlation between
software quality metrics and physical ones; (2) identifying the relevant quality soft-
ware metrics for embedded software design; (3) measuring the impact of specifica-
tion strategies by using software quality metrics. Furthermore, we show that these
metrics can be used to improve embedded software with respect to its physical prop-
erties. We will also show that some sacrifices in terms of reuse or maintainability
are required in order to achieve a hard constrained performance.

The analyzed applications are a wheelchair control and an MP3 player. The
wheelchair control application consists of a real-time embedded system dedicated to
the automation and control of an intelligent wheelchair that helps people with spe-
cial needs. For this experiment, we have implemented only the wheelchair move-
ment control, which is an essential use case of the system. The MP3 player is an
application that is usually embedded in many consumer electronics systems, used to
play music in a compressed data format. This application presents a dataflow pro-
cessing channel in which many algorithms must be executed until the compressed
data can be played.

Different solutions were developed for both applications. All solutions were im-
plemented using Java for the target platform. For every alternative implementation,
a synthesis tool was used to obtain the hardware description and the Java byte codes
for the application. From the final implementation, in Java byte codes, we extracted
the physical metrics by using a cycle-accurate simulation , while from the Java
source code we extracted the software quality metrics by using the Eclipse Met-
rics plug-in.

The physical data from cycle-accurate simulation and software metrics from
Eclipse Metrics were matched using the cross-correlation formula that measures

On the Use of Software Quality Metrics to Improve Physical Properties 105

the similarity of two arrays of data. Results obtained for both quality and physical
metrics, including the cross-correlation between them, are presented in the follow-
ing.

4.1 Experimental results

Firstly, we have analyzed the cross-correlation between these different metrics for a
given application and afterwards among different applications to observe whether
the achieved correlation is similar for all applications or not. A positive cross-
correlation means that an increase on a given quality metric results in an increase
on the related physical property. On the other hand, negative values translate to an
inverse relationship.

In the MP3 player experiment three different solutions were analyzed. Sol-1 is
object-oriented and follows as much as possible the recommendations of software
engineering. Sol-2 is OO too, but much more concerned with physical proprieties of
the final system. Sol-3 is entirely targeted at good values for physical proprieties of
the resulting product and thus entirely static. Table 1 shows the physical properties
obtained for each MP3 solution. Analyzing these results, one can observe that the
best solution considering traditional software engineering paradigms (Sol-1) is the
worst one regarding physical metrics.

Table 2 presents the quality metrics and the correlation between them and the
physical properties. For all software metrics the maximum value or total is showed,
except the metrics marked with an asterisk (*), for which we have used the average
value because their total values just tell us where to look for bad code constructs.
An average value, in turn, shows us how much a good or bad behavior is distributed
across the entire application.

Table 1 Extracted physical metrics from the MP3 player.

Property Sol. 1 Sol. 2 Sol. 3
Program memory 238,484 237,192 242,688
Data memory 146,812 117,756 324,733
Cycles 1,830,675,876 830,365,894 239,748,559
Energy (J) 79.8575 36.2221 21.9624

For the wheelchair experiment four solutions were analyzed. Sol-1 is the most
concerned about performance, energy, and memory of the final system. All oper-
ating system services were implemented by the application, and only the required
services are implemented. Sol-2, in turn, is the most concerned with the quality of
the software product. It uses threads and an underlying platform that supports mul-
tithreading, among other features. Sol-3 and Sol-4 use the same platform as Sol-2
and differ from each other in design strategies. Table 3 summarizes the physical
proprieties of the wheelchair solutions, and Table 4 shows the software metrics val-

106 Ricardo M. Redin et al.

Table 2 Extracted software quality metrics and its cross-correlation to physical metrics on MP3
Player.

Property Sol. 1 Sol. 2 Sol. 3 Prog. Data Cycles Energy
Mem. Mem.

Abstractness 0.143 0 0.2 0.858 0.804 -0.132 0.005
Afferent Coupling 3 2 5 0.994 0.979 -0.536 -0.416
Depth of Inheritance Tree 2 1 2 0.682 0.608 0.147 0.281
Efferent Coupling 4 2 3 0.225 0.130 0.622 0.723
Instability 0.75 1 1 0.293 0.384 -0.930 -0.972
Lack of Cohesion of Methods* 0.655 0.42 0.245 -0.671 -0.740 0.998 0.980
McCabe Cyclomatic Complexity* 1.832 7.448 6.492 0.137 0.232 -0.860 -0.922
Method Lines of Code 4101 4618 5675 0.850 0.897 -0.942 -0.887
Nested Block Depth* 1.188 2.23 2.305 0.349 0.438 -0.951 -0.984
Normalized Distance* 0.707 0.556 0.626 0.184 0.088 0.654 0.752
N. of Attributes 186 112 6 -0.797 -0.852 0.969 0.926
N. of Children 106 22 4 -0.447 -0.531 0.978 0.997
N. of Classes 27 26 64 0.979 0.994 -0.769 -0.674
N. of Methods 463 85 47 -0.371 -0.458 0.957 0.988
N. of Packages 5 3 6 0.884 0.834 -0.185 -0.048
N. of Parameters 7 14 6 -0.761 -0.695 -0.033 -0.169
N. of Static Attributes 98 58 597 0.987 0.998 -0.740 -0.641
N. of Static Methods 127 2 71 0.283 0.189 0.574 0.681
Total Lines of Code 7891 6853 8423 0.887 0.838 -0.191 -0.055
Weighted methods per Class 1081 648 766 -0.030 -0.127 0.800 0.875

ues and the cross-correlation between software and physical metrics. In Table 3, BC
identifies the metric value for the Best Case execution of the controller.

Table 3 Physical metrics obtained from the Wheelchair Movement Controller.

Property Sol. 1 Sol.2 Sol. 3 Sol. 4
Program memory 2,063 6,248 5,208 5,094
BC Data memory 372 582 431 421
BC Performance 1,898 28,588 9,104 7,776
BC Energy 2,714,132 40,569,570 12,916,022 11,026,748

As one of the applications is dataflow and the other one is control flow, some
correlations differ from one experiment to the other. As expected, performance and
energy are highly-correlated physical properties. In all experiments these two met-
rics follow the same tendencies, and correlation between software metrics and each
of them hardly differ significantly from the other.

4.2 Experimental results analysis

While some good practices of software engineering cause an overhead in the phys-
ical properties of embedded systems, other ones can help to design better products

On the Use of Software Quality Metrics to Improve Physical Properties 107

Table 4 Extracted software quality metrics from the Wheelchair Movement Controller and its
cross-correlation to physical ones.

Property Sol. 1 Sol. 2 Sol. 3 Sol. 4 Prog. Data Cycles Energy
Mem. Mem.

Abstractness 0 0 0 0 0.000 0.000 0.000 0.000
Afferent Coupling 1 4 2 2 0.849 0.994 0.992 0.992
Depth of Inheritance Tree 1 2 2 2 0.958 0.584 0.572 0.571
Efferent Coupling 1 2 2 2 0.958 0.584 0.572 0.571
Instability 1 0.5 0.667 0.667 -0.995 -0.846 -0.837 -0.837
Lack of Cohesion of Methods* 0.71 0.639 0.51 0.519 -0.588 0.025 0.040 0.041
McCabe Cyclomatic Complexity* 1.238 1.312 1.261 1.25 0.773 0.995 0.996 0.996
Method Lines of Code 58 94 62 49 0.525 0.916 0.922 0.922
Nested Block Depth* 1.143 1.25 1.174 1.15 0.720 0.983 0.985 0.985
Normalized Distance* 0.5 0.567 0.583 0.583 0.885 0.419 0.405 0.404
N. of Attributes 0 22 20 17 0.988 0.710 0.700 0.699
N. of Children 0 0 0 0 0.000 0.000 0.000 0.000
N. of Classes 5 7 7 7 0.958 0.584 0.572 0.571
N. of Methods 2 29 20 17 0.982 0.883 0.876 0.875
N. of Packages 3 4 4 4 0.958 0.584 0.572 0.571
N. of Parameters 3 3 3 2 -0.163 0.224 0.234 0.234
N. of Static Attributes 20 28 17 19 0.408 0.864 0.870 0.871
N. of Static Methods 8 3 3 3 -0.958 -0.584 -0.572 -0.571
Total Lines of Code 146 283 190 170 0.782 0.996 0.996 0.996
Weighted methods per Class 26 42 29 25 0.629 0.962 0.966 0.966

without affecting physical properties or even improving them. In this section, we
analyze our experimental results and show some tradeoffs between software engi-
neering guidelines and code optimizations to improve as much as we can physical
properties of the final system, looking for a good balance between both sides.

The best OO practices indicate that a reduced coupling is desired, so the coupling
metrics Ca, Ce, and Instability should have small values. We observed that there is
a high correlation (around 0.9) among the metric Ca and data and program memory,
which suggests that this metric impacts on the memory footprint. This is confirmed,
by the case studies, where Sol-1 of the wheelchair controller and Sol-2 of the MP3
player present the smallest Ca value and achieve the smallest memory size in com-
parison with the other solutions. Instability (I) indicates if a package is stable or not.
A value of zero is required. A correlation around -0.9 was found between Instability
and energy as well as between Instability and performance, showing that this quality
metric has a negative impact on these physical metrics. It means that solutions with
higher I values are the best ones in terms of performance/energy, as confirmed by
our results.

The OO paradigm leads designers to build cohesive modules that require lit-
tle or no interaction with other modules. It suggests that, in order to have compo-
nents architecturally and logically well defined, smaller values for Lack of Cohesion
(LCOM) are desired. We have observed that the best solution for the MP3 player in
terms of energy/performance is Sol-3, which has the smallest LCOM value. The
opposite situation is found for the wheelchair controller, where Sol-1 is the best so-

108 Ricardo M. Redin et al.

lution for all physical properties and presents the highest LCOM. The reason for
that is the fact that Sol-1 of the wheelchair controller has the smallest number of
attributes (NOA), which is a metric strongly related to performance and energy.

High reuse is desired in all traditional software projects. High values for the met-
rics Abstractness (A) and Depth of Inheritance Tree (DIT) are thus required, because
they indicate that the components are extensible and can be reused. Abstractness
measures the number of abstract classes and has an impact on the memory foot-
print, as can be observed in the results for the MP3 player. For the wheelchair case
study, no abstract class or interface is used. DIT measures the depth of inheritance
tree, and high values for this metric lead to higher reuse. As expected, inheritance
causes an overhead in memory, performance, and energy. The best solution for all
of these physical aspects has the smallest DIT numbers.

Normalized Distance (Dn) is another reuse metrics, but numbers close to zero
indicate a good packaging design. The best solutions for physical metrics in our
experiments also show the smallest Dn values. However, the variation of Dn is too
small in our experiments to consider it as an interesting correlation.

The quality of software is also evaluated using population metrics. However,
there are no safe value ranges for these metrics because they depend on the size of
the project. Since these population metrics also impact on the physical properties,
we have also analyzed the correlation between them.

As expected, when the number of static attributes (NOSA) increases, the data
memory also increases, which is confirmed by our results. Sol-3 of the MP3 player
and Sol-2 of the wheelchair controller have the highest values for NOSA in compar-
ison with the other solutions, and, consequently, these solutions are the less efficient
regarding data memory.

A considerable high correlation among the number of attributes (NOA) and the
performance and energy is found for both case studies. The solution with small
NOA is the best one regarding performance and energy. As expected, the number of
attributes impacts on the required data memory size. Sol-1 of wheelchair controller
presents NOA equal to 0 and has the smallest data memory size. It is interesting to
notice that Sol-3 of the MP3 player has the smallest number of attributes (NOA) but
has the highest number of static attributes (NOSA). This shows that the designer of
this solution decided to pay an overhead in memory footprint by the use of static
attributes in order to improve the performance and energy metrics. The high corre-
lation between the NOA and memory cannot be found in the MP3 player because
of the strong correlation between NOA and NOSA. The reduction on the number
of dynamic attributes (NOA) and the increase of static attributes (NOSA) lead to a
better result in terms of performance and energy. This can be observed in Sol-4 of
the wheelchair controller and in Sol-3 of the MP3 player.

It is known that the number of packages (NOPk) impacts the program memory
size, and this has been observed in our experiments by the high correlation among
these metrics and by the fact that the solutions with less NOPk present small pro-
gram memories.

As expected, the number of methods (NOM) has a direct impact on the number of
cycles and on the energy, as confirmed by the high correlation found among them.

On the Use of Software Quality Metrics to Improve Physical Properties 109

The best solutions regarding performance and energy are those that have a small
number of methods. However, in the OO paradigm using a small numbers of large
methods is not a good practice.

Embedded software designers usually replace dynamic methods by static ones
in order to reduce the overhead for method invocation. In the wheelchair con-
troller case study, the results confirmed this statement, since the best solution in
performance and energy is Sol-1, which has the highest number of static meth-
ods (NOSM). However, in the MP3 player case study, this is not found. For this
case study, Sol-1 has the highest NOSM (127), but this solution is not the best one
regarding performance/energy. The reason for this is that the number of methods
(NOM) is strongly related to the NOSM and this solution has the highest (NOM)
value (463), which causes a huge overhead in both performance and energy that was
not compensated by the variation in NOSM values. Sol-3 is more efficient regarding
performance and energy and has an intermediate (NOSM) value (71).

5 Conclusions and future work

We have presented an analysis of the relationship between software quality metrics
and physical metrics for embedded systems. The experiments have shown that de-
cisions on the software design phase can greatly impact on the physical properties
of the final system. We have shown that it is also possible to use software quality
metrics to help in design decisions in order to improve the physical properties of em-
bedded systems. However, our experiments show that there are strong correlations
between some quality metrics and, in this case, they cannot be separately analyzed.

Moreover, we have proposed the use of software quality metrics to indicate mod-
ifications that can be applied to a given modeling solution in order to obtain a better
solution in terms of performance, energy, or memory footprint, with a small de-
crease, for instance, in code reuse. We are currently developing a tool to modify a
modeling solution with respect to the quality metrics in order to find a sweet spot in
the design space.

A large subset of the metrics used in this work can be measured directly on UML
models. Using these metrics on UML models can help designers to early explore
the solution space, looking for sweet spots without the use of a previously measured
library of components directly in UML.

References

1. Aggarl, K. K. et al. Empirical Study of Object Oriented Metrics. Journal of Object Technol-
ogy, v. 5, n. 8, 2006.

2. Beck, A.C. et al. CACO-PS: A General Purpose Cycle-Accurate Configurable Power Simu-
lator. In: Proc. of Symposium on Integrated Circuits and Systems Design (SBCCI), 2003.

110 Ricardo M. Redin et al.

3. Graaf, B.; Lormans, M.; Toetenel, H. Embedded Software Engineering: the State of the Prac-
tice. IEEE Software, v. 20, n. 6, p. 61- 69, Nov. – Dec. 2003.

4. Henderson-Sellers, B. Object-Oriented Metrics, Measures of Complexity. Prentice Hall,
1996.

5. Henzinger, T.A.; Sifakis, J. The Discipline of Embedded Systems Design. IEEE Computer, v.
40, n. 10, p. 32-40, Oct. 2007.

6. Ito, S.; Carro, L.; Jacobi, R. Making Java Work for Microcontroller Applications. IEEE De-
sign & Test of Computers, v. 18, n. 5, 2001.

7. Jerraya, A.A. et al. Embedded Software for SoC. Kluwer Academic Publishers, 2003.
8. Martin, R. Agile Software Development, Principles, Patterns and Practices. Prentice Hall,

2002.
9. Metrics. Eclipse Plug-in Available at: http://metrics.sourceforge.net/

10. Sommerville, I. Software Engineering, 7th ed. Pearson, 2004.
11. Xenos, M. et al. Object-oriented Metrics - A Survey. In: Proc. of the Federation of European

Software Measurement Associations (FESMA), 2000.
12. Zhang, W.; Jarzabek, S. Reuse without Compromising Performance: Industrial Experience

from RPG Software Product Line for Mobile Devices. In: LNCS, n. 3714, 2005.

Minimizing Leakage Energy with Modulo
Scheduling for VLIW DSP Processors

Meng Wang, Zili Shao, Hui Liu, and Chun Jason Xue

Abstract As technology scaling approaches to the nanometer, leakage power has
become a significant component of the total power consumption. In this paper, we
develop a novel leakage-aware modulo scheduling algorithm to achieve leakage en-
ergy savings for DSP applications with loops on VLIW architecture. The proposed
algorithm is designed to maximize the idleness of function units integrating with
leakage management scheme [9], and reduce the number of transitions between ac-
tive and sleep modes. We have implemented our technique into the Trimaran com-
piler [1] and conducted experiments using a set of benchmarks from DSPstone [11]
and Mibench [7] on the VLIW simulator of Trimaran. The results show that our
algorithm achieves significant leakage energy savings compared with the leakage-
aware scheduling algorithm [8].

1 Introduction

As technology feature size continues to shrink, leakage power is becoming com-
parable to dynamic power in the current generation of technology [3, 6, 10], and
it will further dominate the overall energy consumption in future technologies [4].
High performance DSP (Digital Signal Processing) needs to be performed not only
with high data throughput but also with low power consumption in embedded sys-

Meng Wang · Zili Shao
Department of Computing, The Hong Kong Polytechnic University, Hong Kong
e-mail: csmewang, cszlshao@comp.polyu.edu.hk

Hui Liu
Software Engineering Institute, Xidian University, Xi’an, China
e-mail: liuhui@xidian.edu.cn

Chun Jason Xue
Department of Computer Science, City University of Hong Kong, Hong Kong
e-mail: jasonxue@cityu.edu.hk

Please use the following format when citing this chapter:

Wang, M., et al., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded Systems:
Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 111–120.

112 Meng Wang, Zili Shao, Hui Liu, and Chun Jason Xue

tems. VLIW (Very Long Instruction Word) architecture that has multiple functional
units (FUs) and can process several instructions simultaneously is widely adopted
in high-end DSP. While this multiple-FUs architecture can be exploited to increase
instruction-level parallelism and improve time performance, it causes more leakage
power consumption. Therefore, it becomes an important problem to reduce the leak-
age energy of a DSP application on VLIW architecture. Since loops are usually the
most critical parts in a DSP application, we develop a loop scheduling technique to
reduce the leakage energy of an application on VLIW architecture.

A lot of research efforts have been put to characterize cost models for analyzing
static power [3] and evaluate techniques for leakage power reduction [9]. The archi-
tecture level model in [3] confirms that the functional units contribute to a notice-
able fraction of leakage power despite having relatively fewer transistors compared
to caches. A hardware based leakage energy management scheme is proposed in [9]
for short idle periods. In their scheme, the dual-threshold domino logic with sleep
mode that can transit between active mode and sleep mode is utilized.

Many techniques [8, 5] are proposed to reduce leakage energy consumption of
functional units for VLIW architecture. Nagpal et al. [8] proposed a leakage-aware
instruction scheduling algorithm for VLIW and clustered VLIW architectures to re-
duce leakage energy by exploiting the scheduling slacks of instructions. In most of
the above work, the instruction scheduling for reducing leakage power is based on
DAG (Directed Acyclic Graph) scheduling in which only intra-iteration dependen-
cies are considered. In this paper, we show that we can significantly improve the
leakage energy by carefully exploiting inter-iteration dependencies.

In this paper, we propose a leakage-aware modulo scheduling algorithm that as-
sists the hardware based leakage energy management scheme [9] to achieve leak-
age savings for DSP applications in the context of VLIW architecture. Our basic
idea is to schedule nodes into better locations in order to maximize the idleness of
function units integrating with leakage reduction control, and reduce the number
of transitions between active and sleep modes. We implement our technique into
the Trimaran compiler [1] and conduct experiments on a set of benchmarks from
DSPstone [11] and Mibench [7] based on the power model in [9]. The results show
that our algorithm achieves significant leakage energy savings compared with the
leakage-aware scheduling algorithm [8]. On average, our technique contributes to
14.73% reduction in the leakage energy consumption with only 1.74% decrement
in the performance.

The rest of the paper is organized as follows. Motivational examples are shown
in Section 2. The basic concepts are introduced in Section 3. The scheduling algo-
rithm is proposed in Section 4. The experimental results and analysis are provided
in Section 5, and the conclusion is given in Section 6.

Minimizing Leakage Energy with Modulo Scheduling for VLIW DSP Processors 113

2 Motivational Examples

In order to show how our approach works, we present an example in this section.
We use Trimaran compiler [1] to generate the Data Flow Graph for this example
and perform modulo scheduling on it. We compare the scheduling generated by the
traditional modulo scheduling and our technique. The energy model to calculate the
leakage energy is introduced in Section 3.2.

Fig. 1 The FIR program and its corresponding data flow graph.

A real DSP application, the FIR program and the Data Flow Graph of the inner-
most loop is shown in Figure 1. In the graph, each node denotes a computational
task in the loop, and there are 7 integer ALU operations, 4 memory operations, 1
floating ALU operation and 1 branch for this particular example. The edge without
delay represents the intra-iteration data dependency (e.g. A→D), and the edge with
delays represents the inter-iteration data dependency (e.g. J → A has an edge with
one delay which is denoted by one bar), in which the number of delays represents
the number of iterations involved.

Assume that we want to schedule the graph in Figure 1 to the VLIW architecture
with 7 FUs which are fully pipelined. And let FU1 and FU2 be integer ALUs,
FU3 and FU4 be floating-point ALUs, FU5 and FU6 be memory units and FU7
be the branch unit. Note that we assume the integer operations A, B, C, H, J, K,
L take 1 cycle for execution, the load operations D, E, F take 2 cycles, the store
operation I takes 1 cycle, and the floating multiplication node G takes 2 cycles to
finish execution in this example.

The schedule generated by the traditional modulo scheduling is shown in Fig-
ure 2. Based on the power model in [9], for integer ALUs which are most heavily
utilized, the dual-threshold domino logic with sleep mode can transit between ac-

Delay

Integer Operation

Memory Operation

loop body

void fir (float *x, float *y, float *w)

{
 int i1,i2;
 for (i1=0; i1<= N1−N2; i1++) {
 y[i1] = 0.0;
 for (i2=0; i2<N2; i2++)
 y[i1]+= w[i2]* x[i1+i2];
 }
}

L

G

H

loop body

Float Operation

 FD E

BCAJ K

I

114 Meng Wang, Zili Shao, Hui Liu, and Chun Jason Xue

Time IALU FALU Memory Units BRANCH
FU1 FU2 FU3 FU4 FU5 FU6 FU7

0 A B I
1 C H D E
2 J K F
3 L
4 G
5 Branch

Fig. 2 The schedule generated by performance-oriented modulo scheduling.

Time IALU FALU Memory Units BRANCH
FU1 FU2 FU3 FU4 FU5 FU6 FU7

0 A I
1 B
2 C D E
3 H F
4 J
5 K G
6 L Branch

Fig. 3 The schedule generated by our technique.

tive mode and sleep mode after one cycle of idleness. The circuit expends very little
leakage energy in the sleep mode. However, the energy savings of this schedule
are severely affected by frequent transitions from active mode to sleep mode and
vice-versa because of many short idle periods.

The schedule generated by our technique is shown in Figure 3. For this exam-
ple, the schedule generated by our technique has little performance loss than the
traditional modulo scheduling algorithm. In this schedule, FU2 is totally unused,
so we can put FU2 into the sleep mode before entering the loop body. Thus, our
technique achieves big leakage savings compared with the performance-oriented
modulo scheduling.

3 Basic Concepts

3.1 Modulo Scheduling Overview

The objective of modulo scheduling [2] is to engineer a schedule for one iteration
of the loop such that when this same schedule is repeated at regular intervals, no
intra- or inter-iteration dependence is violated, and no resource usage conflict arises
between operations of either the same or distinct iterations. This constant interval
between the start of successive iterations is termed the initiation interval (II). The
repetitive portion can be re-rolled to yield a new loop which is termed the kernel.

Minimizing Leakage Energy with Modulo Scheduling for VLIW DSP Processors 115

The prologue is the code that precedes the repetitive part and the epilogue is the
code following the repetitive part. The minimum initiation interval (MII) is a lower
bound on the smallest possible value of II for which a modulo schedule exists. The
MII must be equal to or greater than both the resource-constrained MII (ResMII)
and the recurrence-constrained MII (RecMII). The candidate II is initially set to the
MII and increased until a legal modulo schedule is found.

3.2 Energy Model

The energy model used in this paper is based on [9]. The total energy in a functional
unit in this model is determined as follows:
Etotal = Dyn Energy + Leak Energy + Trans Energy + Sleep Energy
Etotal = nA (αEA+(1-D)ES1)+(nAD+nUI)(αES0 +(1-α)ES1) +MZ((1-α)EA+ESleep)
+nZES0

Here, nA is the number of active cycles, nUI is the number of uncontrolled idle
cycles, nZ is the number of sleep mode cycles and MZ is the number of transitions
between different modes. ES0 and ES1 are low and high leakage energy consumption,
respectively.

4 Leakage-Aware Modulo Scheduling Algorithm

In this section, we first propose the leakage-aware modulo scheduling algorithm in
Sections 4.1. Then we discuss its key functions in Section 4.2.

4.1 The Proposed Algorithm

In the proposed algorithm, our basic idea is to schedule nodes of a loop to better
locations in order to enlarge the idleness in FUs which can be exploited to apply
leakage energy control mechanism. In most of the previous work, loop is modeled
as the DAG part of a DFG in which only intra-iteration dependencies are considered.
As shown in Section 2, by exploring inter-iteration dependencies, we can get more
opportunities to schedule nodes of DFG to better locations in a schedule to achieve
more leakage energy saving. The leakage-aware modulo scheduling algorithm is
shown in Algorithm 4.1.

In the algorithm, G is the data flow graph of the loop, TC is the timing constraint
and the BudgetRatio is the ratio of the maximum number of operation scheduling
steps attempted before giving up to the number of operations in the loop. This pa-
rameter determines how hard the function IterativeSchedule() tries to find a legal

116 Meng Wang, Zili Shao, Hui Liu, and Chun Jason Xue

Algorithm 4.1 The leakage-aware modulo scheduling algorithm.
Require: The data flow graph G=〈V, E, d, t〉, the timing constraint TC, BudgetRatio.
Ensure: A schedule S with minimum leakage energy Min Energy.

// Initialize the value of II to the Minimum Initiation Interval
1: II := MII();
2: Min Energy← ∞;
3: while II < TC do
4: Budget := BudgetRatio * NumberofOperations;
5: while IterativeSchedule(II, Budget)!= SUCCESS do
6: II := II+1;

// Calculate the leakage energy based on the power model [9]
7: S′ := The generated legal schedule;
8: ES′ := CalculateEnergy(S′);
9: if Min Energy > ES′ then

10: S← S′ and Min Energy← ES′
11: end if
12: end while
13: end while

schedule for a candidate II before giving up. The output of the algorithm is a legal
schedule S with minimum leakage energy Min Energy.

In the algorithm, we first initialize the value of II to the minimum initiation in-
terval. Then, function IterativeSchedule() is used to perform the actual scheduling
as shown in Algorithm 4.2. After all operations have been scheduled and a legal
schedule is generated, we record the energy of it and compare it with Min Energy.
The algorithm terminates when the timing constraint is achieved.

4.2 Function IterativeSchedule()

In function IterativeSchedule(), we first calculate the priority for each operation
based on the height-based priority function ComputePriority() of modulo schedul-
ing, and pick up the operation with highest priority to be scheduled. In function
ComputePriority(), we calculate the longest path from the node to the end of the
data flow graph. This function gives higher priority to operations on the critical path
in order to achieve a good schedule.

Then, the schedule time bounds for the current operation are calculated according
to the data dependence constraint. We use function FindTimeSlot() to find a legal
time slot for the current operation within the range (MinTime, MaxTime). MinTime
is the earliest start time for an operation as constrained by its dependences on its
predecessors. MaxTime equals to MinTime + II−1 since each iteration in modulo
scheduling begins exactly II cycles after the previous one.

In function FindTimeSlot(), the goal is to find an empty block to put the operation
CurrOper in. We first calculate the start time and the end time of each empty block
in each functional unit.

Minimizing Leakage Energy with Modulo Scheduling for VLIW DSP Processors 117

Algorithm 4.2 Function IterativeSchedule().
Require: Graph G, the initiation interval II and the Budget.
Ensure: A schedule S or failure information.

// Calculate the schedule time bounds for the current operation
1: ComputePriority();
2: while (the list of unscheduled operations is not empty) & (Budget > 0) do
3: CurrOper = HighestPriority();

// Calculate the schedule time bounds for the current operation
4: (MinTime,MaxTime) = ComputeSlack(CurrOper);

// Select the time slot for leakage energy optimization
5: SchedSlot = FindTimeSlot(CurrOper,MinTime,MaxTime);

// Perform the actual scheduling
6: Schedule(CurrOper,SchedSlot);
7: Budget–;
8: end while
9: if all operations are scheduled then

10: return SUCCESS;
11: else
12: return FAILURE
13: end if

In order to enlarge the idleness in FUs, we always start to search from FU1 and
try to find the earliest empty block on it. If we can not find an empty block in FU1,
FU2 will be tried next time; then we try FU3, · · · ,FUn, until we can find such an
empty block. In this way, we can schedule operations onto one functional unit as
much as possible. And thus, we can enlarge the idleness of FUs and increase the
number of unused FUs. The benefit is that we have more chance to put the total
unused functional units into low leakage mode before entering the loop body. It
is possible that we can not find any empty block to put the operation in. In this
case, we employ the same backtracking method as that of Rau’s modulo scheduling
algorithm [2].

After finding the suitable empty block, we compare the earliest schedule time of
the operation and the start time of the empty block in order to determine whether the
operation should be scheduled at the beginning or at the end of this empty block.
By scheduling the nodes into locations close to each other, we can maximize the
consecutive idle period in functional units.

5 Experiments

We have implemented our technique into the Trimaran compiler [1] and conduct
experiments using a set of benchmarks from DSPstone [11] and MiBench [7] on
the cycle-accurate VLIW simulator of Trimaran. In this section, we first discuss the
setup of our experiments in Section 5.1, and then present experimental results in
section 5.2.

118 Meng Wang, Zili Shao, Hui Liu, and Chun Jason Xue

5.1 Experimental Environment

To compare our technique with the leakage-aware scheduling technique [8], we use
the VLIW simulator of Trimaran [1] as our test platform. The configuration for the
VLIW Trimaran simulator is shown in Table 1.

Table 1 The configurations of Trimaran.

Parameter Configuration
Functional Units 4 integer ALU, 2 floating point ALU, 2 load-store units

1 branch unit, 5 issue slots
Instruction Latency 1cycle for integer ALU, 1 cycle for floating point ALU

2 cycles for load in cache, 1 cycle for store, 1 cycle for branch
Register file 32 integer registers, 32 floating point registers

5.2 Results and Discussion

In the experiment, we obtain the results of the leakage energy reduction of Inte-
ger ALUs and performance penalty on the code generated by our technique. We
compare the energy results with that of the code generated by the leakage-aware
scheduling algorithm [8] with leakage management scheme [9]. We compare the
performance penalty results with that of the code generated by the modulo schedul-
ing [2].

We assume that the technology is 65nm and 50% of the total energy of the VLIW
processor is the leakage energy. In the following, we present and analyze the results
in terms of leakage energy reduction and performance penalty.

5.2.1 Leakage Energy Reduction

We compare our algorithm with leakage-aware scheduling technique [8] in Trimaran
[1], the percentage of reduction in the leakage energy consumption is shown in Fig-
ure 4. In Figure 4, the results for Nagpal’s technique and our technique are presented
in bars with different color, and the right-most bar ”AV G.” is the average result.

Our algorithm reduces leakage consumption in the functional units by schedul-
ing operations using less functional units to maximize the idleness of the functional
units. Moreover, in the loop-level granularity, our technique minimizes the number
of transition time between low level and high level leakage mode by turning off
the totally unused functional units before entering the loop body. The experimen-
tal results show that our algorithm significantly reduces the leakage energy of the
processor. Compared with leakage-aware scheduling technique [8], on average, our
algorithm achieves 14.73% reduction for the benchmarks.

Minimizing Leakage Energy with Modulo Scheduling for VLIW DSP Processors 119

0

5

10

15

20

25

30

35

%I
AL

Us
' L

eak
age

 En
erg

y
Re

du
cti

on

do
t_p

rod
uc

t

n_
com

ple
x_

up
da

tes fir

fir
2d

im lm
s

n_
rea

l_u
pd

ate
s

ma
trix IIR

fft_
sta

ge_
sca

led

fft_
inp

ut_
sca

led

bfe
ncr

ypt

bfd
ecr

ypt cjp
eg

djp
eg

gsm
en

cod
e

gsm
dec

od
e

raw
cau

dio

raw
da

ud
io

AV
G.

Our Technique Nagpal's Technique

Fig. 4 Leakage energy reduction due to our leakage-aware scheduling algorithm compared with
leakage-aware scheduling technique [8].

5.2.2 Performance Penalty

We compare our technique with the performance-oriented modulo scheduling [2],

and the percentage of performance penalty is shown in Figure 5. On average, the

results show that our technique leads to a 1.74% performance penalty for the bench-

marks.

0

1

2

3

4

5

%
Per

for
ma

nce
 Pe

nal
ty

dot
_pr

odu
ct

n_
com

ple
x_u

pda
tes fir

fir2
dim lm

s

n_
rea

l_u
pda

tes

ma
trix

con
vol

uti
on

fft_
sta

ge_
sca

led

fft_
inp

ut_
sca

led

bfe
ncr

ypt

bfd
ecr

ypt cjp
eg

djp
eg

gsm
enc

ode

gsm
dec

ode

raw
cau

dio

raw
dau

dio AV
G.

Our Technique

Fig. 5 Performance penalty.

The reason of the performance loss is that our technique may use less functional

units to schedule the operations and try to schedule them close to each other. Thus,

it may enlarge the schedule length to achieve the goal of maximizing the idleness of

functional units. However, in our technique, the performance penalty is controlled

by the timing constraint that determines whether employing our technique or not.

In the experiment, the maximum number of delays is set as 1.3 * MII (Minimum

Initiation Interval). Therefore, the performance penalty is very small. With such

small performance loss, our technique is suitable for embedded systems.

120 Meng Wang, Zili Shao, Hui Liu, and Chun Jason Xue

6 Conclusion

In this paper, we proposed a leakage-aware modulo scheduling algorithm to re-
duce leakage energy for DSP applications with loops on VLIW architectures. The
proposed algorithm is designed to maximize the idleness of function units integrat-
ing with leakage management scheme [9], and reduce the number of transitions
between active and sleep modes. We have implemented our technique into the Tri-
maran compiler [1] and conducted experiments using a set of embedded bench-
marks from DSPstone [11] and Mibench [7] on the cycle-accurate VLIW simulator
of Trimaran. The results show that our algorithm achieves significant leakage energy
savings compared with the leakage-aware scheduling technique [8].

Acknowledgements The work described in this paper is partially supported by the grants from the
Research Grants Council of the Hong Kong Special Administrative Region, China (CERG 526007
(PolyU B-Q06B), and PolyU A-PA5X).

References

1. The Trimaran Compiler Research Infrastructure. http://www.trimaran.org/.
2. B.R.Rau. Iterative modulo scheduling: an algorithm for software pipeling loops. In 27th

Annual International Symposium on Microarchitecture, pages 63–74.
3. J. Butts and G. Sohi. A static power model for architects. In Proceedings of The 33rd Annual

IEEE/ACM International Symposium on Microarchitecture, pages 191–201, 2000.
4. D.Sylvester and H.Kaul. Power-driven challenges in nanometer design. IEEE Design and Test

of Computers, 18:12–22, 2001.
5. H.S.Kim, N.Vijakrishnan, M.Kandemir, and M.J.Irwin. Adapting instruction level parallelism

for optimizing leakage in vliw architectures. In ACM SIFPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, pages 275–283.

6. W. Liao, J. M.Basile, and L. He. Leakage power modeling and reduction with data retention.
In 2002 IEEE/ACM International Conference on Computer-Aided Design, pages 714–719,
2002.

7. M.R.Guthaus, J.S.Ringenberg, D.Ernst, T.M.Austin, T.Mudge, and R.B.Brown. Mibench: A
free, commercially representative embedded benchmark suite. In Proceedings of the IEEE
International Workshop on Workload Characterization, pages 3–14, 2001.

8. R.Nagpal and Y.N.Srikant. Compiler-assisted leakage energy optimization for clustered vliw
architectures. In 6th ACM/IEEE International Conference on Embedded Software, pages 233–
241, 2006.

9. S.Dropsho, V.Kursun, D.H.Albonesi, S.Dwarkadas, and E.G.Friedman. Managing static leak-
age energy in micro-processor functional units. In the 35th annual ACM/IEEE international
symposium on Microarchitecture, pages 321–332.

10. T.N.Mudge. Power: A first class design constraint for future architecture and automation. In
the 7th International Conference on High Performance Computing, pages 215–224.

11. V. Zivojnovic, J.Martinez, C.Schlager, and H.Meyr. Dspstone: A dsp-oriented benchmarking
methodology. In Proceedings of the 1994 International Conference on Signal Processing
Applications and Technology, 1994.

Using Imprecise Computation Techniques for
Power Management in Real-Time Embedded
Systems

Geovani Ricardo Wiedenhoft and Antônio Augusto Fröhlich

Abstract Embedded systems present severe limitations in terms of processing and
memory capabilities and are often powered by batteries, making energy an important
resource to be managed. This work explores energy as a parameter for Quality of
Service (QoS) of embedded systems. The goal is to guarantee the battery lifetime
specified by the application and yet preserve the deadlines of essential (hard real-
time) tasks. We propose equations to check at project-time if a given set of tasks are
schedulable. At execution-time, a preemptive scheduler for imprecise tasks based
on the EDF algorithm prevents the optional subtasks execution when ever there is
the possibility of deadline loss or battery exhaustion. A prototype was developed in
EPOS using power management mechanisms provided by the system.

1 Introduction

Embedded systems are computational platforms dedicated to execute an usually
known set of tasks with specific objectives. Typically, these systems present severe
limitations in terms of processing and memory capabilities. Some of them, due to
the mobile nature of their applications, are also powered by batteries with a limited
supply of energy. Considering all these limitations, it is important for the mobile
embedded system to be able to manage energy consumption without compromising
system’s performance.

Embedded systems hardware can rely on several mechanisms to manage energy
consumption. Among them, are techniques of DVS (Dynamic Voltage Scaling) and
resources hibernation. Some works in the literature explore the integration of these
techniques with approaches that guarantee quality of service (QoS). Most of these

Geovani Ricardo Wiedenhoft · Antônio Augusto Fröhlich
Laboratory for Software and Hardware Integration, Federal University of Santa Catarina, PO Box
476 – 88049-900 – Florianópolis, SC, Brazil
e-mail: grw,guto@lisha.ufsc.br

Please use the following format when citing this chapter:

Wiedenhoft, G.R. and Fröhlich, A.A., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded
Systems: Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 121–130.

122 Geovani Ricardo Wiedenhoft and Antônio Augusto Fröhlich

approaches, however, only seek to minimize energy consumption with the main
focus on traditional QoS metrics for processing, memory and communication. In
a previous work [10], we argue that it is not enough just ensure traditional QoS
metrics if, by doing so, the system runs out of battery and is unable to complete its
computations.

We consider energy as a QoS parameter to meet the battery lifetime specified by
the system developer, thus using QoS in terms of energy. In this work, the goal is not
only to reduce energy consumption, but to improve the application utility in a system
with limited energy charge, ensuring the battery lifetime and the deadlines of hard
real-time tasks. The proposed approach expects the developer to define the period
that the embedded system must be operational. By monitoring battery lifetime, the
scheduler is able to select the tasks that will be executed or it can decrease QoS
levels in order to reduce energy consumption and enhance system lifetime.

To achieve the proposed goal, the QoS control of applications was inspired by
imprecise computation [5]. Imprecise computation divides tasks into two subtasks:
one implementing a mandatory execution flow and another implementing an op-
tional flow. The mandatory flow is the hard real-time part of the task, and it must
always be executed with in its deadline. The optional flow is the best-effort part
of the task, which is only executed if the desired timing requirements can be met.
The imprecise computation scheduler does not execute the optional subtasks when
there is the possibility of any mandatory subtask deadline to be lost, thus reducing
the demand for system processing. Moreover, in our scheduler, we propose that the
optional subtasks be prevented from executing when the energy level will not be
sufficient to meet the time specified by application. This control creates more idle
periods in the system, and the scheduler can use power management techniques to
reduce the energy consumption of components during these idle periods.

The proposed scheduler is based on EDF (Earliest Deadline First) [4] scheduler,
which the tasks with the lowest deadlines have the highest priorities. A prototype
of this proposal was implemented in EPOS [6], a component-based embedded op-
erating system. EPOS provides a set of mechanisms for power management, such
as an infrastructure which allows applications to achieve appropriate power man-
agement [3] and a power manager with different operating modes that realize power
management for application [9]. Moreover, EPOS provides a battery monitoring sys-
tem, which informs the remaining energy in the platform.

2 Background

This work aims at guaranteeing that the batteries used in an embedded system can
last at least the time required by the application and yet preserving the deadlines
of essential tasks, i.e., the deadlines of hard real-time tasks. Our scheduler starts to
decrease QoS levels in order to save energy when it detects that batteries will not
last long enough to satisfy a previously defined expected system lifetime. The de-
creased control of application QoS levels is based on imprecise computation mech-

Using Imprecise Computation Techniques for Power Management 123

anisms [5], which divide tasks into two subtasks: a mandatory one and an optional
one. The proposed scheduler is based on the EDF scheduling algorithm.

2.1 Imprecise Computation

Imprecise computation is a scheduling technique originally proposed to satisfy tim-
ing requirements of real-time tasks through decreasing levels of QoS. The control
of application QoS levels done by imprecise computation worsens quality of results
by not executing optional subtasks in order to guarantee that no mandatory subtask
deadlines will be lost.

With the division of each task into two parts, imprecise computation unites real-
time computing and best effort techniques for, respectively, the mandatory and op-
tional subtasks. The mandatory subtask of imprecise tasks generates imprecise re-
sults which reflect the minimum of QoS to guarantee that these results are useful.
These imprecise results have their quality enhanced when the optional subtask exe-
cutes, generating the precise results.

The imprecise computation showed us favorable to use in our proposal in relation
to energy. Suppose that a task consumes X energy units obligatorily. When it is
divided into mandatory subtask (Y energy units) and optional subtask (Z energy
units) the scheduler can save Z energy units if the optional subtask is not executed.

2.2 EDF

The EDF (Earliest-Deadline First) [4] algorithm is a real-time scheduling mech-
anism based on dynamic priorities and widely used in the literature. EDF dis-
tributes the highest priorities to the tasks with the shortest deadlines. At project-
time a schedulability test evaluates the possibility of any task lose its deadline. At
execution-time a preemptive scheduler selects to execute the highest priority task in
READY state.

An exact schedulability test of the EDF algorithm is presented below. The real-
time system considered contains n periodic and independent tasks, τ = {τ0,τ1, ...,
τn−1}. Each τi is characterized by three parameters, (Pi,Di,Ci), where Pi is the pe-
riod in which the task i is scheduled, Di is the max relative deadline of conclusion in
relation to instant of the task i release and Ci is the task i execution time in the worst
case which included times waiting by the priorities reversal. In this test is supposed
that ∀τi, Di = Pi . The utilization Ui of the task i in processing terms is represented
by equation Ui = Ci

Di
. The processor’s capacity is set to 1, i.e., 100%. A system

with ω processors has ω capacity. Thus, in order to tasks to be schedulable in the
EDF algorithm, the utilization sum of all the tasks must be less than or equal to the
processors’ capacity, i.e.,

124 Geovani Ricardo Wiedenhoft and Antônio Augusto Fröhlich

n

∑
i=1

(
Ci

Di

)
≤ ω (1)

where ω = 1 on a system with single-processor. If ∑n
i=1 Ui > ω , the processor will

be overloaded and the tasks will not be schedulable.

3 The Proposed Scheduling Strategy

Our scheduler, based on EDF, guarantees the execution of mandatory subtasks with
their deadlines respectively met, independently of the system energy level. How-
ever, the optional subtasks execution is not guaranteed. The optional subtasks are
executed only if the mandatory subtasks deadlines and the system’s batteries life-
time desired by application are met.

The objective of this scheduler is not only save the energy consumed in the sys-
tem — otherwise, the technique would simply never execute the optional subtasks
— but to meet the battery lifetime specified by the application and to meet the
mandatory subtasks deadlines with the execution of the maximum possible of the
optional subtasks, thus optimizing the application utility.

Figure 1 presents proposed scheduler algorithm, which the subtasks are treated
as tasks in terms of scheduling. π is the interval among battery charge measurements
that can be specified by the application programmer and must take into consideration
that each measurement consumes energy to be performed. This interval depends on
the battery power state found in the last measurement.

1: For every task that enters in READY state:
2: Determine the new absolute deadline in accordance with the elapsed time
3: Determine the priority based on absolute deadline
4: Add to the queue according to calculated priority
5:
6: For each π time units: /* π specified by the programmer and it depends on the energy state */
7: Measure the battery
8: Check if there is enough energy to meet the time required by application
9:
10: For each rescheduling:
11: Select the highest priority task in READY state
12: if, task is hard real-time, then
13: Execute the selected task
14: else, /* task is best effort */
15: if, there is enough energy to meet the system lifetime required, then
16: Execute the selected task
17: else, /* Battery does not have sufficient energy */
18: Use power management techniques
19:

Fig. 1 Proposed scheduler algorithm.

Using Imprecise Computation Techniques for Power Management 125

3.1 Schedulability Tests at Project-Time

The proposed scheduler is based on the EDF algorithm, thus it is possible to fol-
low the same logic to calculate the tasks schedulability at project-time with a few
adjustments. Suppose that the real-time system considered has n periodic and inde-
pendent tasks, τ = {τ0,τ1, ...,τn−1}, where ∀τi, Di = Pi . In the imprecise computa-
tion model, each τi is divided into mandatory and optional subtasks with execution
times in the worst cases of µi and θi, respectively. Therefore, the total execution
time of τi, in the worst case, is Ci = µi +θi . In order to guarantee that no mandatory
subtasks deadlines will be lost, equation (2) must be respected.

n

∑
i=1

(
µi

Di

)
+σ ≤ ω (2)

Where ω = 1 for a system with a single-processor and σ represents the interfer-
ence in the worst cases, which includes: time spent in the operating system, context
switch, scheduler algorithm. Equation (2) must be met in order for the tasks to be
schedulable in relation to mandatory subtasks deadlines, otherwise, the processor is
overloaded.

With the inclusion of the optional subtask execution time in equation (2), we can
determine if the tasks as a whole will be executed, mandatory and optional subtasks.
However, it is important to note that equation (3) is not a obligatory requirement in
our algorithm and only will be relevant when equation (2) is true, otherwise, the
tasks are not schedulable.

n

∑
i=1

(
µi +θi

Di

)
+σ ≤ ω (3)

Mandatory and optional subtasks are schedulable in relation to their deadlines
when equation (3) is respected. Otherwise, a certain fraction χ of optional subtasks
is discarded. Equation (4) presents how to find the fraction χ .

χ =
∑n

i=1

(
µi+θi

Di

)
+σ −ω

∑n
i=1

(
θi
Di

) (4)

The energy-related objective can be achieved by following the same kind of logic
presented thus far, but taking into account the tasks’ energy consumption rate. The τi
energy consumption in the wort case, Ei, is given by the sum of the energy consump-
tion in the mandatory and optional subtasks worst cases times Eµ i e Eθ i, respectively,
(Ei = Eµi +Eθ i). We suppose that, as with worst cases times, the worst cases energy
consumptions are previously known by the application developer. These values can
be obtained by energy profiling or another techniques. The maximum number of
possible executions ηi of τi in the time required by application Tt is given by di-
vision between the time required and the execution interval of τi, i.e., ηi = Tt

Pi
. Tt

is given by the application developer based on battery capacity. In order to meet at

126 Geovani Ricardo Wiedenhoft and Antônio Augusto Fröhlich

least the mandatory parts of the tasks, we have equation (5) which indicates if the
set of tasks will be schedulable with respect to energy.

n

∑
i=1

(
Eµ i×ηi

Et

)
+ ε ≤ 1 (5)

Where Et is the total energy of the system (battery specification), i.e., battery
capacity, ε represents energy consumption in the worst case of different factors such
as the energy consumed by the operating system, the context switch, the scheduler
algorithm itself. The battery’s capacity is set to 1, i.e., 100 %. Substituting ηi in the
equation (5) we have equation (6).

n

∑
i=1

(
Eµ i×Tt

Pi×Et

)
+ ε ≤ 1 (6)

The tasks are schedulable in relation to energy in our algorithm if equation (6)
is respected. Otherwise, the system will not meet the battery lifetime required by
application for this set of tasks. The inclusion of the energy consumed by optional
subtasks in equation (6) allows us to check if the tasks as a whole will be executed.
As discussed previously, this is not an obligatory requirement and equation (7) only
should be calculated if equation (6) is respected, i.e., mandatory subtasks met.

n

∑
i=1

((
Eµi +Eθ i

)×Tt

Pi×Et

)
+ ε ≤ 1 (7)

All mandatory and optional parts of the tasks are executed in relation to system
energy if equation (7) is respected. Otherwise, a certain fraction γ of optional sub-
tasks will not be executed because the system would not meet the battery lifetime
specified by the application. Equation (8) provides a fraction γ of optional subtasks
discarded in relation to energy.

γ =
∑n

i=1

(
(Eµi+Eθ i)×Tt

Pi×Et

)
+ ε−1

∑n
i=1

(
Eθ i×Tt
Pi×Et

) (8)

In this algorithm, the objective is to meet the two parameters in relation to time
and energy, i.e., the mandatory subtasks deadlines and battery lifetime specified by
the application, respectively. Thus, (9) is the full equation of our scheduler that must
be true in order to tasks will be schedulable.

[
n

∑
i=1

(
µi

Di

)
+σ ≤ ω

]
∧

[
n

∑
i=1

(
Eµi×Tt

Pi×Et

)
+ ε ≤ 1

]
(9)

The mandatory subtasks have their executions guaranteed in our scheduler in
relation to time and energy if equation (9) is respected. The maximum fraction λ
possible of optional subtasks lost in relation to time and energy can be obtained by
equation (10).

Using Imprecise Computation Techniques for Power Management 127

λ = max(χ ,γ) (10)

3.2 Schedulability Test at Execution-Time

In order to provide QoS in terms of energy and make better use the resources with
the optional subtasks execution it is necessary periodically to check at execution-
time if the battery lifetime specified by the application Ttκ in the instant κ can be
achieved. Therefore, Ttκ is recalculated in the instant κ according to the elapsed
time. The total energy of the system (battery charge) Etκ also must be recalculated
in the instant κ . The embedded systems platforms usually provide mechanisms to
get the battery charge. Equation (11) can be recalculated with the new values in
order to check if Ttκ can be met in the instant κ .

n

∑
i=1

(
Eµi×Ttκ

Pi×Etκ

)
+ ε ≤ 1 (11)

All mandatory subtasks are executed and optional subtasks will be scheduled if
equation (11) is respected because this equation indicates there is sufficient energy to
meet Ttκ . Otherwise, some optional subtasks will be discarded. The scheduler calls
a power manager in the time that the optional subtasks would be in execution. Thus,
it takes the idle time of the system in order to save energy. The optional subtasks
return to be executed when it is observed that equation (11) returns to be true.

4 Implementation

A prototype was developed in order to test the proposed scheduler using EPOS (Em-
bedded Parallel Operating System) [6]. EPOS is a framework of hierarchically or-
ganized components that generates application-specific runtime support systems.
To do that EPOS analyzes the set of dedicated applications it must support prior
to system generation time, thus configuring the system accordingly. Furthermore,
through the separation of system abstractions, hardware mediators and scenario as-
pects, EPOS allows the development of fully platform-independent applications.

In EPOS, every system component implements a uniform power management in-
terface [3]. This infrastructure allows applications to interact with the system to im-
plement proper energy consumption management for embedded systems. Through
the use that EPOS provides a low-overhead dynamic power manager [9]. This power
manager uses re-pluggable heuristics, allowing configuration and adaptability to
specific applications. The EPOS power manager has different operation modes, such
as the possibility to choose if the manager will be on or off, the possibility of con-
figuring only the desired components by the application for the power management,
and if the manager will be active or passive in the power management.

128 Geovani Ricardo Wiedenhoft and Antônio Augusto Fröhlich

EPOS also provides a battery charge monitor, which contributes to achieve the
objectives of this work. The EPOS monitor is based on the battery voltage observa-
tion in order to get the battery charge, because the battery characteristic is to have
its tension reduced as the use. However, there are some details to be observed, be-
cause the sampled voltage is not linearly related to battery discharge rate, the system
does not have the ability to convert all provided tension in usable resource and also
there is a minimum voltage that the system works. Thus, the monitor establishes a
discreet relationship between the voltage and battery charge through the division of
the obtained voltages in 10 time slices, which the voltages have different variations.
Each slice corresponds to a nominal capacity percentage of the used battery.

The EPOS monitor does not implement a constant tracking of the real battery
voltage, as each sampling consumes energy to be realized, in addition to consid-
erably overhead for the application. In order to reduce these effects, the monitor
uses a structure with information previously known which allows tracking the en-
ergy consumption in an approximate way. The information are in relation to specific
characteristics of the battery and energy consumption by the system hardware com-
ponents that will be monitored. The monitor verifies the battery charge through the
voltage in the beginning of the execution, and during the execution updates the value
with energy consumed by system peripherals.

We extended EPOS to support our scheduler with imprecise tasks and conditional
executions to time and energy parameters. The tasks model in EPOS was based on
monotone imprecise tasks. In this model, the monotone tasks improve the result
quality at the time in execution and the worst case do not change the result. Thus, the
mandatory subtasks generate results with the minimum QoS necessary to guarantee
that these results are useful, and the optional subtasks realize successive refinements
that results. The completion of these tasks can occur at any execution time without
cause integrity problems in the results. Thus, the scheduler can decide at any instant
to finalize the optional subtask execution. The application is responsible for the
results integrity by different methods such as the use of control bits or the use of last
data update timestamps.

The imprecise tasks implementation in EPOS was realized through the creation
of two threads: one containing execution flow to handle the mandatory part and
another with the execution flow to handle the optional part. The system creates these
threads in a transparent manner to the programmer. This approach only expects the
programmer to specify, when creating a imprecise thread, two entry points: one for
the mandatory subtask and another for the optional subtask with their parameters.

The scheduler in execution always chooses the highest priority subtask in accor-
dance with the deadlines as our algorithm is based in EDF. The optional subtasks
are scheduled if there are not mandatory subtasks in READY state and if there is
energy enough to meet battery lifetime specified by the application, i.e., optional
subtasks have lower priorities than mandatory subtasks. When a mandatory sub-
task enters in READY state and its optional subtask is not yet finished the execution
in the previous period, the scheduler immediately suspends this optional subtask
execution. These characteristics prevent mandatory subtasks deadlines losses. The
optional subtasks contexts are always restarted in a new task period.

Using Imprecise Computation Techniques for Power Management 129

The scheduler also updates at execution-time the Ttκ with elapsed time and the
Etκ using the EPOS energy monitor. Scheduler recalculates the equation (11) in
periods π with these new values in order to check if the system is able to sustain the
current workload without running out of battery before the required lifetime Ttκ is
achieved. π will depend on the last energy analysis. In the best case, equation (11) is
respected and optional subtasks can be scheduled. Otherwise, optional subtasks are
discarded and, taking advantage of the idle period created, the scheduler executes the
EPOS power manager in passive mode. In addition to saving energy by not execute
the optional subtasks, the power manager reduces the system energy consumption
through the use of power management techniques. The optional subtasks return to
execution when the scheduler identify Ttκ+ι can be met again in instant κ + ι .

5 Related Work

GRACE-OS [11] is an energy-efficient operating system for mobile multimedia ap-
plications. This system uses a cross-layer adaptation technique to guarantee QoS
on systems with adaptive software and hardware. It combines real-time scheduling
with DVS mechanisms to dynamically manage energy consumption. It was imple-
mented over the LINUX operating system and it only supports soft real-time tasks.
GRUB-PA [8] is somehow similar to GRACE-OS. The main difference is GRUB-
PA supports both soft and hard real-time tasks.

Niu [7] proposed to minimize energy consumed by soft real-time systems while
guaranteeing QoS requirements. This goal is achieved by a hybrid static/dynamic
scheduling algorithm that it uses DVS mechanisms and it partitions the set of tasks
in mandatory and optional tasks. In this work, the QoS requirements are qualified by
(m,k) constraints which it specifies that tasks must meet at least m deadlines in any
k consecutive task releases. In a similar work, Harada [2] proposed to resolve the
trade-off between QoS maximization and energy consumption minimization. It uses
an allocation of processor cycles and frequency with QoS guarantees and it divides
each task into mandatory and optional parts.

Other projects explore trade-off between application’s QoS and energy consump-
tion through adaptations in the applications aiming to meet the time specified by
application. ODYSSEY [1] uses that idea. It monitors the energy budget and with
this information it can select the correct state between energy saving and quality
of application. This work also demonstrates how the applications can dynamically
change their behavior (“fidelity” of the data) with the goal of saving energy.

ECOSYSTEM [12] is another operating system that supports application adapta-
tion. This system is based in a “currency” that the applications use to allocate (“to
pay”) system resources (e.g., access to memory, network or disks), called currentcy.
The system distributes currentcies periodically to tasks accordingly to an equation
that defines the discharge rate that the system battery can assume to force the system
to last for a defined period of time. This allows applications to adapt their execution
based on their currentcy balance. This model unifies the calculation of energy on

130 Geovani Ricardo Wiedenhoft and Antônio Augusto Fröhlich

the various hardware devices and it provides a satisfactory energy allocation among
the applications.

6 Conclusion

This work proposed an approach to exploit energy as a QoS parameter in order to
guarantee that battery lifetime can last time desired by mobile embedded system
and yet preserve the deadlines of hard real-time tasks. Our approach was inspired
by imprecise tasks concepts, according to tasks can be divided into mandatory and
optional parts. In this article, equations at project-time were presented with objective
the of application programmer to check if a set of tasks will be schedulable in our
algorithm in relation to two parameters desired, i.e., time and energy. At execution-
time, our scheduler based on EDF algorithm ensures the mandatory subtasks dead-
lines and recalculates the equation of energy in order to check if the required bat-
tery lifetime will be met. The optional subtasks are prevented from executing, i.e,
decreasing QoS levels if any required parameter will not be met. A prototype was
developed in EPOS, which allowed the execution of a power manager in idle periods
created by non-execution of the optional subtasks, thus reducing energy consump-
tion by stopping or slowing down system components during these idle periods.

References

1. Flinn, J., Satyanarayanan, M.: Energy-aware adaptation for mobile applications. In: ACM
SOSP ’99, pp. 48–63. ACM Press, New York, NY, USA (1999)

2. Harada, F., Ushio, T., Nakamoto, Y.: Power-aware resource allocation with fair qos guarantee.
In: IEEE RTCSA ’06, pp. 287–293. IEEE Computer Society, Washington, DC, USA (2006)

3. Hoeller, A.S.J., Wanner, L.F., Fröhlich, A.A.: A Hierarchical Approach For Power Manage-
ment on Mobile Embedded Systems. In: 5th IFIP DIPES, pp. 265–274. Braga, Portugal (2006)

4. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20(1), 46–61 (1973). DOI http://doi.acm.org/10.1145/321738.321743

5. Liu, J.W., Shih, W.K., Lin, K.J., Bettati, R., Chung, J.Y.: Imprecise computations. Proceedings
of the IEEE 82(1), 83–94 (1994)

6. Marcondes, H., Junior, A.S.H., Wanner, L.F., Fröhlich, A.A.: Operating Systems Portability:
8 bits and beyond. In: 11th IEEE ETFA, pp. 124–130. Prague, Czech Republic (2006)

7. Niu, L., Quan, G.: A hybrid static/dynamic dvs scheduling for real-time systems with (m,
k)-guarantee. rtss 0, 356–365 (2005)

8. Scordino, C., Lipari, G.: Using resource reservation techniques for power-aware scheduling.
In: ACM EMSOFT ’04, pp. 16–25. ACM Press, New York, NY, USA (2004)

9. Wiedenhoft, G.R., Hoeller, A.S.J., Fröhlich, A.A.: A Power Manager for Deeply Embedded
Systems. In: 12th IEEE ETFA, pp. 748–751. Patras, Greece (2007)

10. Wiedenhoft, G.R., Hoeller, A.S.J., Fröhlich, A.A.: Quality-Of-Service: the Role of Energy.
In: 9th Workshop on Real-Time Systems, pp. 107–110. Belem, Brazil (2007)

11. Yuan, W.: Grace-os: An energy-efficient mobile multimedia operating system. Ph.D. thesis,
University of Illinois at Urbana-Champaign (2004)

12. Zeng, H., Ellis, C.S., Lebeck, A.R., Vahdat, A.: Ecosystem: managing energy as a first class
operating system resource. In: ACM ASPLOS-X, pp. 123–132. ACM, New York, NY (2002)

A Power Model for Register-Sharing Structures

Balaji V. Iyer and Thomas M. Conte

Abstract Register files (RF) are known to consume about 20% of the power inside
a processor. Embedded systems, due to area and timing constraints, generally have
small register files, which can cause significant register pressure. This work explores
how having a map-table or a map-vector can decrease the power dissipation in the
processor. The distribution of register writes and sharing of commonly occurring
values such as ‘0’ is investigated. It is shown that systems with small register files
obtain a greater power reduction than larger register files when these sharing struc-
tures are used. Finally, the proposed power model comes within 95% accuracy when
compared using benchmarks on a synthesized Verilog softcore processor.

1 Introduction

Registers play a significant role to improve the instruction-level-parallelism (ILP), in
modern systems [2, 5, and 11]. Large register files (RF), with the help of an optimal
register allocation scheme, can greatly reduce the number of spill-code inserted in
the program [1]. This can reduce the memory traffic, thus reducing the number of
execution cycles necessary.

To remove false dependences in dynamically-scheduled processors, designers
implement rename-map tables that map the architectural registers to physical regis-
ters [2, 3]. In statically scheduled systems, these false dependencies are resolved by
using tighter register allocation schemes and/or large RF. In either case, there can
be a huge amount of pressure exerted on RF [1].

Even though the idea of implementing a large RF is attractive for performance
(figure-of-merit for performance is IPC), there can be setbacks in terms of energy

Balaji V. Iyer · Thomas M. Conte
Center of Efficient, Scalable and Reliable Computing, North Carolina State University, Raleigh,
NC 27695
e-mail: bviyer, conte@ncsu.edu

Please use the following format when citing this chapter:

Iyer, B.V. and Conte, T.M., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded
Systems: Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 131–142.

132 Balaji V. Iyer and Thomas M. Conte

or power dissipation, access time and chip area [12]. It is known that RF energy
consumption accounts for about 10-20% of the overall energy consumption [3, 5].
For example, in the Motorola M.CORE architecture, the RF energy consumption
accounts for 16% of the total processor power and 42% of the dual-path power.

Current embedded systems are required to achieve high performance, but many
still must run on batteries [4, 13]. Battery technology significantly lags behind the
processor’s power consumption [13]. New technology processes currently allow
higher integration density and larger chips, which leads to higher power consump-
tion and heat radiation. High heat in chips can cause glitches, races and frequent
errors [1].

To combat the performance degradation, researchers are exploring several hard-
ware and software optimization techniques. Some of the software techniques include
reducing value lifetimes [6, 10], content-based value storage [5], packing instruc-
tions into pairs [9], and value based register sharing [2, 11]. There are also several
hardware based solutions to reduce the access time and power dissipation such as
distributing the registers among clusters [10, 14] and gating certain unused registers
in the RF [1].

The majority of the techniques mentioned above take advantage of value locality.
The granularity of a value can be the whole word or even certain patterns in a word.
These techniques exploit the fact that a large number of values written to registers
are already present inside the RF. To do such value sharing between registers, some
hardware addition is necessary.

The main aspect of this paper is to understand the power overhead added by
these structures that aid register/value sharing. In addition, we point out when such
structures are useful and help reduce the RF power dissipation. Moreover, we try to
show how the patterns of register-writes can affect the power consumption of the
RF. Finally, we validate our power-model using standard embedded benchmarks.

2 Related Work

Optimizing register-usage for performance improvement has been studied for the
past two decades. The problems concerning power and heat dissipation in proces-
sors became a problem only in the nineties. Zyuban and Kogge in [16] study the
power dissipation of an integer RF. Their models express the power consumption of
a register in terms of the number of read-write ports and issue width. Similarly, Xao
and Ye in [15] also provide models for finding power dissipation in RF.

Hu and Martonosi in [6] find that most read and write operations occur within a
few cycles. They introduce a value aging buffer that saves recently-produced values
so that the instructions requiring these values need not access them from RF. They
received a power reduction of 30% with a less than 5% performance loss.

Kim and Mudge in [8] observe that only 0.1% of the cycles fully utilize a 16-bit
read port of the RF. The main aim of their work was to reduce the number of read-
ports, not the number of registers. They use a delay-writeback queue, an operation

A Power Model for Register-Sharing Structures 133

pre-fetch buffer and request queues. They show 22% reduction in energy per register
access.

Gonzalez et al. in [5] explain ways to share partial values between registers inside
a RF. They find a 50% reduction in power consumption with 1.7% IPC loss. Ayala,
Veidenbaum and Lopez-Vallejo in [1] propose ways to statically find registers that
are not used during certain times and turn-off these registers to reduce power. They
show 46% energy reduction in the entire MiBench benchmark suite.

Seznec, Toullec and Rouchecouste in [10] propose that restricting certain func-
tion units to write and read only a subset of registers (clustering the processor) can
reduce the access time by 33% and power by 50%. Jain et al. in [7] evaluate the RF
for an ASIP using ARM7TDMI as a test processor. It is shown that there is a high
correlation between performance improvement and energy reduction. They further
prove that slight increase in number of registers will give a large amount of power
reduction in ASIP (˜50%).

Balakrishnan and Sohi in [2] discussed using a map-table for relieving register
pressure by sharing values such as ‘0’. Tran et al. in [11] proposed a way to mark
Reorder-buffers with one bit to indicate if the instruction’s result from the ALU
is a zero. [11] also discusses using a map-table as a possibility. These two papers
are quoted extensively for value sharing inside the RF. In this work, we find the
power contributions of these two types of structures for different configurations and
percentage of zeros-writes in RF.

3 Experimental Frameworks

In order to view the register-value patterns, we picked four machines with different
register-file sizes: ARM (thumb), OpenRISC, Simplescalar (PISA), and IA64. Ta-
ble 1 below shows the register configuration of these four machines. The benchmark-
set consists of 10 benchmarks from the EEMBC workload [20]. Table 2 explains
these benchmarks. EEMBC is considered one of the most representative bench-
marks in the industry today. Secondly, we modeled different RF configurations
along with the appropriate sharing structures using Verilog. The original RF was
extracted from the Verilog model of the OpenRISC 1000 processor [17]. The RF
contains 2 read ports and 1 write port. These models were synthesized (0.18 µm
IIT/OSU-standard-cell library) using Synopsys Design Analyzer and simulated us-
ing the Cadence NC-Verilog simulator to generate the VCD waveform files.

Table 1 Register file sizes of different architectures

Processor/Architecture Number of Registers
ARM (thumb mode) 16
OpenRISC 1000 Processor 32
Simplescalar 2.0 Simulator (PISA) (using hard float) 64
IA-64 (using software floating point) 128
IA-64 (using hardware floating point) 256

134 Balaji V. Iyer and Thomas M. Conte

Table 2 EEMBC Benchmarks Description

Benchmarks Description
aifir01 FIR Filter
conven00 Convolutional encoder
Dither Floyd-Steinberg error diffusion Dithering Algorithm
Ospf Open-shortest path first/Dijkistra’s Algorithm
Puwmod Pulse Width Modulation Algorithm
rotate01 Image Rotation Algorithm
Routelookup IP Datagram forwarding Algorithm
rspeed01 Road Speed Calculation
ttsprk01 Tooth-to-Spark tests in automobiles
viterb00 Viterbi Decoder

The synthesized register files along with the sharing structures are placed-and-
routed using Cadence Design Encounter. The parasitic information is extracted dur-
ing this process. Power analysis was done by Synopsys Primepower software using
the VCD files, parasitic information and the synthesized gate-level verilog model.
RF Inputs are discussed in section 5. Primepower is considered one of the most
accurate power measurement tools, second only to SPICE [19].

4 Preliminary Analysis

To benefit from register sharing it is necessary to see if there is a great deal of
duplicate values and constant values written into the registers. It was found by ex-
perimentation that ‘0’ is the most frequent value written in the register-file. Table 3
shows the percentage of zero-writes and duplicate-writes (dupl. writes) in the ten
benchmarks used in this work. Zero-writes are not necessarily a subset of duplicate
writes, since in the life-time of a program, certain values can be re-written several
times but not duplicated in the RF.

Table 3 Percentage of Zero-Writes and Duplicate-Writes for Different Architectures.
ARM (Thumb Mode) OpenRISC 1000 Simplescalar 2.0 IA-64 (Soft Float) IA-64 (Hard Float)

Benchmark Zero- Dupl. Zero- Dupl. Zero- Dupl. Zero- Dupl. Zero- Dupl.
Write Write Write Write Write Write Write Write Write Write

aifirf01 24% 43% 13% 46% 20% 67% 1% 5% 1% 5%
conven00 15% 48% 30% 49% 25% 48% 1% 7% 1% 7%
dither 8% 14% 8% 21% 10% 15% 2% 10% 2% 10%
puwmod 3% 25% 6% 39% 3% 30% 1% 9% 1% 10%
rotate 3% 17% 3% 23% 3% 17% 1% 10% 1% 11%
routelookup 5% 40% 7% 53% 5% 44% 1% 5% 1% 5%
rspeed01 4% 20% 21% 45% 3% 23% 1% 7% 1% 7%
ttsprk01 5% 28% 25% 53% 3% 39% 1% 8% 1% 8%
viterbi 11% 31% 12% 40% 7% 42% 1% 6% 1% 6%
ospf 6% 35% 19% 41% 3% 32% 1% 5% 1% 5%

There are a large number of duplicate and zero-writes occurring inside a RF. The
distribution of these writes also varies across benchmarks. In some benchmarks such

A Power Model for Register-Sharing Structures 135

as dither, the zero-writes occur in a pattern, but in benchmarks such as routelookup,
they are very bursty. In the remaining benchmarks they are more or less random.

5 Register Sharing Techniques

Power dissipation of the RF is a popular research area. Many register optimization
techniques can greatly help in improving the performance of the program. Most
register-sharing techniques typically encompass using either a map-table [2] or a
map-vector [11]. Figure 1 explains the top-level block diagram of these two struc-
tures.

Fig. 1 Top-level block diagram of the map-table or the map-vector.

A register map-table is used to map certain architectural registers to physical reg-
isters that hold the certain values. Since there is a significant amount of ‘0’ written
into the RF, we choose one architectural register (r0) that is permanently grounded
to zero. Any register whose value is zero is mapped to r0. The primary advantage of
this scheme is that we do not access the RF for zero-writes, thus saving power.

A Second approach is to use a map-vector to indicate which registers hold the
zero value. Each register is assigned a bit in the vector to indicate if its result is
zero. If the corresponding bit is set, then the register-file is not accessed. In our
experiments, map-vectors generally consume about 30-40% less power than a map-
table. As soon as we reach the write-back stage, we know the register value along
with the result to be written. If the value written is zero then a certain bit is set in a
map-table and the RF is not accessed. Otherwise the value is forwarded to the RF
and written to the appropriate register. Figure 2 present flow-charts for the steps in
these stages. These structures were designed such that the processor’s clock-cycle
remains unaffected. The base processor’s clock-period remains unaffected by using
these structures.

To accurately portray register writes, 1-million register writes and 2-million reg-
ister reads were generated. In each run we increased the number of zeros by a set
percentage. Throughout the paper, the number of zeros in the stream is given in
terms of percentage. It is worth mentioning that we only read registers that have
already been written (with the exception of the stack pointer and the return value

136 Balaji V. Iyer and Thomas M. Conte

Fig. 2 Flow-diagram for the write-back stage (a) and reg-read stage (b) of the processor that uses
a map-vector.

Fig. 3 Example of Different placement of zero-writes in our experiments (50% zero-writes) for 20
register-writes

register1). Figure 3 explains different test-input schemes. In Figure 3, the number of
writes was reduced to 20 for the ease of explanation.

In addition, we also created sequences of zeros writes into the RF. These se-
quences of writes are placed in different regions. For example the sequence 40-10
implies that the first 10% of the register writes are non-zero values. Next 40% of
the writes are zeros. Then, the remaining 50% of the values are non-zero writes.

1 Registers r1 and r9 are designated as stack pointer and return register as described in [17].

(a) (b)

A Power Model for Register-Sharing Structures 137

We take this model further and break this zero sequence into intervals to see their
effects. For example, 40-40-10 implies that the first 40% of the writes are non-zeros,
and then in the next 60%, the 40% zeros (bold) are divided into intervals of 10%. In
the next section we explain the results of these distributions.

6 Results

To see the impact of the RF size on power dissipation a 32-bit RF of size 16, 32,
64, 128 and 256 registers is modeled. The percentage of zero-writes (distributed
randomly) is varied from 0-100% in 5% intervals. Figure 4-8 show our findings.

Fig. 4 Power dissipation (PD) for random reg-write for (RF size: 16)

In all cases, using a RF with a map-table consumed more power than using just
the RF without any value sharing (the “base” case). The map-vector gives a power
advantage when we have 20% and 45% of zeros for the RF size of 16 and 32,
respectively. The map vector fails to provide a power-reduction for the 128 and
256-size RF. This is because the internal power of the cell dominates significantly
for larger RF. For 64, the break-even point is after 95%.

In this work, leakage power is not a major factor. Static power, however, is a
problem in the memory hierarchy [18]. Inside the processor, the dynamic power is
a major contributor (˜90-95%). In addition, the static power is not activity-based.
The only way to reduce static power is through turning-off certain units, which is
beyond the scope of this work [18].

Next the impact of writing zeros into RF in burst sequences placed at different
parts of the trace is examined. Specifically, we wanted to see if scheduling a chunk of
zero-writes in the beginning, middle or end would be most beneficial. Zero-writes
were placed at 10%, 40% and 80% of the trace to see their impact. The chunk-
size was modeled from 10-80% (whenever applicable). Table 4 shows our findings.

138 Balaji V. Iyer and Thomas M. Conte

Positive values in tables 4 and 5 indicate a power reduction, while negative values
indicate a power increase. Since the map-table failed to provide any power reduction
for the overall system, we do not show its results for the rest of the paper.

Fig. 5 Power dissipation for random reg-write (RF Size: 32)

Fig. 6 Power-dissipation for random reg-write (RF size: 64)

It can be seen that for smaller register files, there is a power reduction even when
zero-writes are not significant. As the register-file size increases, there must be a
significant burst of zeros to get a power reduction. To understand why, we converted
the register file into an appropriate SPICE model using the Synopsis Virtuoso toolset
(“icfb”) to see the transistor layout. We noticed that on large register files, the map-
vectors created a significant amount of latches, which consumed a non-negligible
amount of power. In addition, the wire-lengths between these map-vectors and the

A Power Model for Register-Sharing Structures 139

register-file interface were also huge. This increase in length caused an increase in
wire-capacitance (verified using design encounter’s parasitic values, and the capac-
itance using SPICE), which increased the dynamic power.

Now, we extend our previous results further and divide these sequences into burst
interval chains. Typically in a program, the compiler will have an easier time to
distribute 5-2% zero-write chains as supposed to a one single 10% chain. The values
of intervals where chosen as 2%, 5%, and 10% respectively. These values are chosen
because they are common divisors of 10, 40 and 80, thus making a fair comparison.
Table 5 displays the results of this experiment. The trends noticed in this experiment
are similar to the ones given in Table 4.

According to Table 4, small register-files greatly benefited with such structures
when there were significant number of bursts. For small bursts, the map-vector con-
tributed negatively to the power dissipation. One odd trend in Table 4 and 5 is that
for the same set of sequences, a RF of size 64 did slightly worse than 128. Registers
were chosen to write and read based on a random number generator. For a 128 RF,
the probability of picking the same register to be written twice is significantly less
than that of a 64 RF. Thus, there was more switching inside the RF of 64 than that
of 128, thus we find a 0.3-0.5% difference. This phenomenon did not affect the 256
RF.

Fig. 7 Power Dissipation for random reg-write (RF size: 128)

The next step is to validate our power-model. For this work, we use the Open-
RISC 1000 (OR32) processor. This processor is considered a valid representation of
modern embedded systems [17]. The ten benchmarks mentioned in section 3 were
executed on a Verilog-core of OR32 and the power values of each processor unit
are captured separately. For this work, we only present the power-savings of the
register-file. Table 6 displays our results. It can be seen that the power savings de-
picted using our synthetic benchmarks matched very closely to the values obtained
using representative benchmarks. For example, the benchmark conven00 had 30%
zero-writes, and exhibited a 1.44% power reduction. Value obtained from the syn-

140 Balaji V. Iyer and Thomas M. Conte

Fig. 8 Power Dissipation for random reg-write (RF size: 256)

thetic benchmarks in Figure 5 show a 1.47% reduction in power. The difference is
mainly due to pipeline stalls and the differences in values that are written into the
register. Similarly, dither, even though had approximately the same number of zero-
writes as routelookup, exhibited lower power dissipation due to the bursty nature of
the zero-writes. The rest of the benchmarks, even though they did not fall into the
granularity that was studied in this paper, had power dissipations that fell within the
correct range.

Table 4 Percentage of Zero-Writes in Burst Sequences for Different Register-file sizes

16 Regs. 32 Regs. 64 Regs 128 Regs 256 Regs.
10--10 -0,30% -4,10% -4,10% -4,30% -4,10%
10--20 -0,30% -4,10% -4,10% -4,30% -4,00%
10--30 -0,40% -4,20% -4,10% -4,30% -4,00%
10--40 -0,40% -4,20% -4,10% -4,30% -4,00%
10--60 -0,50% -4,30% -4,10% -4,30% -4,00%
10--80 -0,60% -4,40% -4,20% -4,30% -4,00%
40--10 2,60% 0,40% -3,00% -3,60% -3,60%
40--20 2,40% 0,30% -3,10% -3,70% -3,60%
40--30 2,00% 0,30% -3,20% -3,80% -3,60%
40--40 1,80% 0,40% -3,40% -3,80% -3,70%
40--50 1,60% 0,50% -3,40% -3,90% -3,70%
80--10 7,40% 6,90% -1,60% -2,70% -3,00%
80--20 6,50% 7,40% -1,80% -2,90% -3,10%

A Power Model for Register-Sharing Structures 141

Table 5 Percentage of Zero-Writes in Sequence-intervals for Different Register-file sizes

16 Regs. 32 Regs. 64 Regs 128 Regs 256 Regs.
10--10--2 -25,30% 0,40% -2,70% -1,70% -5%
10--10--5 -25,40% 0,40% -2,80% -1,70% -5%
10--10--10 -25,40% 0,40% -2,80% -1,70% -5,00%
10--40--2 -25,30% 0,40% -2,70% -1,70% -5,10%
10--40--5 -25,30% 0,40% -2,80% -1,70% -5,00%
10--40--10 -25,30% 0,40% -2,70% -1,70% -5%
10--80--2 -25,40% 0,40% -2,70% -1,70% -5,00%
10--80--5 -25,30% 0,40% -2,70% -1,70% -5,00%
10--80--10 -25,40% 0,40% -2,80% -1,70% -5,00%
40--10--2 4,00% 2,30% -1,90% -1,10% -3,60%
40--10--5 3,80% 2,10% -2,10% -1,30% -3,50%
40--10--10 3,80% 2,10% -2,20% -1,40% -3,60%
40--40--2 3,10% 1,70% -2,20% -1,30% -4,90%
40--40--5 3,00% 1,50% -2,40% -1,50% -4,80%
40--40--10 3,00% 1,50% -2,40% -1,50% -4,60%
80--10--2 10,10% 2,70% -2,00% -1,00% -1,70%
80--10--5 9,90% 2,50% -2,10% -1,30% -1,70%
80--10--10 9,00% 2,70% -2,10% -1,30% -2,10%

Table 6 Power Reduction using Map-vector on EEMBC Benchmarks

Percent Zero Writes Power Savings
aifirf01 13% -1,06%
conven00 30% 1,44%
dither 8% -0,78%
puwmod 6% -1,33%
rotate 3% -1,33%
routelookup 7% -1,33%
rspeed01 21% 0,28%
ttsprk01 25% 0,74%
viterbi 12% -0,95%
ospf 19% 0,23%

7 Conclusion

This study reveals several power dissipation patterns of the RF. First, adding a map-
vector can cause a power reduction only when there is a significant amount of zero-
writes present in the workload. Similarly, scheduling multiple zero-writes together,
regardless of the destination registers, can give some power reduction for a small RF.
Some power-reduction can also be achieved if it is able to divide the register write
into intervals rather than just placing them at random. Finally, the power difference
obtained when using such structures is at least 95% accurate when verified using
real benchmarks.

These techniques can be extended to a physical or an architectural register file.
The impact of zero-writes on power dissipation can be useful in several ways. For
example, a compiler can use this information and schedule instructions that poten-
tially have a zero-write together and form chunks. In addition, the processor can

142 Balaji V. Iyer and Thomas M. Conte

gate a map-vector when the compiler or a profiler can predict and communicate that
the number of zero-writes in the system is low. Another option is to run a similar
workload in a simulator to predict the amount of zero-writes and have the com-
piler schedule specialized instructions that enables or disables the register sharing
structure based on the workload.

References

1. J. L. Ayala, A. Veidenbaum, M. Lopez-Vallejo, “Power-Aware Compilation for Register file
energy reduction,” International Journal of Parallel Programming, Vol. 31, No. 6, 2003

2. S. Balakrishnan, G. S. Sohi, “Exploiting Value Locality in Physical Register Files,” Intl. Sym-
posium on Microarchitecture, 2003

3. R. Balasubramonian, S. Dwarkadas, D. H. Albonesi, “Reducing the Complexity of the Reg-
ister File in Dynamic Superscalar Processors,” Intl. Symposium on Microarchitecture, 2001

4. A. Bechini, T. M. Conte, C. A. Prete, “Opportunities and Challenges in Embedded Systems,”
Proc. of the Intl. Symposium on Microarchitecture, August 2004.

5. R. Gonzalez, et al., “A Content Aware Integer Register File Organization,” ISCA, 2004
6. Z. Hu, M. Martonosi, “Reducing Register File Power Consumption by Exploiting Value Life-

time Characteristics,” Workshop on Complexity Effective Design, 2000
7. M. K. Jain, et al., “Evaluating Register File Size in ASIP Design,” Proc. of 9th Intl. Symposium

on Hardware-Software Codesign, 2001
8. N. S. Kim, T. Mudge, “The Microarchitecture of a Low Power Register File,” ISLPED, 2003
9. M. T, Lee, et al., “Power Analysis and Minimization Techniques for Embedded DSP Soft-

ware,” IEEE Trans. on VLSI Systems, Vol. 5, No. 1, 1997
10. A. Seznec, E. Toullec, O. Rochecouste, “Register Write Specialization Register Read Special-

ization: A Path to Complexity-Effective Wide-Issue Superscalar Processors,” International
Symposium on Microarchitecture, 2002

11. L. Tran, et al., “Dynamically Reducing Pressure on the Physical Register File through Simple
Register Sharing,” Intl. Symposium on Performance Analysis of Systems and Software, 2004

12. M. Pericas, et al., “An Optimized Front-end Physical Register File with Banking and Write-
back Filtering,” Workshop on Power-Aware Computer Systems, 2004

13. L. Wehmeyer, et al., “Analysis of the Influence of Register File size on energy consumption,
code-size and execution time,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 20, No. 11, November 2001

14. J. Zalamea, et al., ”Hierarchical Clustered Register File Organization for VLIW Processors,”
Proc. of the Intl. Parallel and Distributed Processing Symposium, 2003

15. X. Zhao, Y. Ye, “Structure Configuration of Low-power register file using energy model,”
Proc. of the IEEE Asia-Pacific Conference on Application-Specific Integrated Circuits, 2002

16. V. Zyuban, P. Kogge, “The Energy Complexity of Register Files,” Proc. of ISLPED, 1998.
17. “OpenRISC Architecture Manual,” http://www.opencores.org, 2003
18. N. S. Kim et al., “Leakage current: Moore’s law meets static power,” IEEE Computer, Vol.

26, Issue 12, 2003
19. R. Goering, “Synopsys launches more powerful power-analysis tool,” EE-times, 2000
20. “Embedded Benchmark Consortium”, http://www.eembc.org/

Design and Implementation of a FTT-CAN
Communication Infra-Structure for the
RT-femtoJava Processor

Rita Kalile Almeida Andrade, Thomás Alimena Del Grande, Tiago Bücker, and
Carlos Eduardo Pereira

Abstract The paper describes the development of a flexible time-triggered (FTT)
communication infrastructure for a customizable Real-time Java processor called
RT-FemtoJava. The proposed infrastructure allows a holistic scheduling of both
messages and tasks in the platform. It permits a high level of abstraction for imple-
menting distributed and communicating tasks. Two different results are presented:
(i) the incorporation of a FTT-CAN communication and a holistic scheduler for
the RT-FemtoJava processor and (ii) the design and implementation of the FTT-
communication profile on top of a wireless protocol. The developed infrastructure
allows the deployment of real-time distributed embedded systems that can balance
performance and resource constraints.

1 Introduction

When dealing with Distributed Embedded Real-Time Systems (DERTS), having
a reliable and deterministic communication system is mandatory, especially when
it involves critical operations, such as in flight-control or process control systems.
Additional to this need for a deterministic temporal behavior, the requirement for
flexible operation is becoming increasingly important in modern industrial systems.
The FTT-CAN protocol [1] is an approach that aims to meet both deterministic vs
flexible behavior requirements by supporting both time-triggered (TT) and event-
triggered (ET) communication schemes.

Rita Kalile Almeida Andrade
Federal University of Rio Grande do Sul - UFRGS - Informatics Institute

Thoms Alimena Del Grande, Tiago Bcker
Federal University of Rio Grande do Sul - UFRGS - Electrical Engineering Department

Carlos Eduardo Pereira
Federal University of Rio Grande do Sul - UFRGS - Informatics Institute and Electrical Enginner-
ing Department

Please use the following format when citing this chapter:

Andrade, R.K.A., et al., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded Systems:
Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 143–150.

144

In this work, an FTT interface for the RT-FemtoJava processor [8] is presented.
The RT-FemtoJava is a custommizable processor that interprets Java bytecodes, al-
lowing a high level of abstraction when it comes to writing the software and is
suitable for real-time applications for having a real-time clock and an API designed
for such utilization. Tasks executed on the RT-FemtoJava processor are scheduled
by a holistic scheduler which schedules messages and tasks according to system
timing requirements.

The remainder of this paper is organized as follows. A brief overview of the
FTT-CAN is presented in Section 2. Section 3 describes related works dealing with
the use of FTT-CANs extensions. Section 4 introduces the RT-FemtoJava proces-
sor. Section 5 presents the implementation of the FTT-CAN protocol for the RT-
FemtoJava and a wireless solution for the same platform in Section 6. Section 7
proposes a holistic scheduler. Concluding, the final remarks are presented in Sec-
tion 8.

2 Flexible Time Triggered on CAN (FTT-CAN) - briefly review

As already mentioned, FTT-CAN combines time- and event-triggered communi-
cation with temporal isolation. An elementary cycle separates the communication
in two phases: one for time-triggered messages and another one to event-triggered
messages. The scheduling of time-triggered messages is performed at runtime by a
master node.

Additionally, the FTT-CAN uses the collision avoidance that is intrinsic of the
CAN protocol, reducing the communication overhead. The protocol uses a master-
multi-slave transmission control, meaning that the same master message can trigger
simultaneously the transmission of the messages in different nodes [1]. CANs ar-
bitration control is also used to control the event-triggered traffic, eliminating the
need for pooling messages. Slaves try to transmit pending event-triggered messages
immediately after the starting of the appropriate phase. Interested readers should
refer [1] for details on FTT-CAN.

3 Related Works

Recent proposals address extensions to FTT protocol to improve some drawbacks.
The approach presented in [2] introduces an extension to the FTT-CAN that im-
proves the bit stuffing pessimism and eliminates priority inversion situation and in-
troduces an offset method to enforce correct message order. Additionally, to reduce
the jitter, a time slot for TT tasks was proposed in order to reduce the interference
of the ET messages within the TT phase. The extension was implemented over an
embedded Real-Time Linux.

R. K. A. Andrade, T. Alimena Del Grande, T. Bücker, C. E. Pereira

Design and Implementation of a FTT-CAN Communication Infra-Structure 145

In [4] a framework was built to support design of task and message dispatch-
ing that uses a centralized approach through a holistic scheduler. This work speci-
fies necessary tasks and messages parameters and a mechanism to synchronize the
scheduling of them. This mechanism was validated by the SimHol simulator.

In [3] a computational model based on RMI and RTSJ definition was presented.
That work assembles a convergence layer that manages the underlying resources
involved in a master-slave communication through a new API. It is based on the
Flexible Time-Triggered communication paradigm adapted to the unicast environ-
ment provided by RT-RMI. The cost of sending and processing a trigger signal is
evaluated using a mono-processor environment. Both master and slaves reside in the
same virtual machine, in order to minimizes the network effects on the application.
For that work uses the jTime [3] virtual machine.

This work differs from the presented approaches above, in the sense that it pro-
poses a holistic scheduling systems that follows the RTSJ standard and the FTT-
CAN paradigm. From developers point of view, calls to remote methods do not
differ from calls to local objects. Event-triggered messages are scheduled according
to the actual runtime situation (i.e. messages priority and ready tasks’s priorities)
without disturbing time-triggered messages. The proposed mechanism runs over the
configurable Java platform called RT-FemtoJava platform.

4 RT-FemtoJava

RT-FemtoJava is a configurable platform that implements a stack machine proces-
sor with different organization (e.g. multicycle, pipeline, VLIW) which natively
executes Java bytecodes and provides a set of APIs to implement the embedded
systems software. The RTFemtoJava processor is configured through the SASHIMI
environment [6], which takes as input Java bytecoded. Additionally, it optimizes
the binary code to assure the predictability of applications software. Details on this
optimization process can be found in [7].

The embedded systems software is written using an API based on the Real-Time
Specification for Java (RTSJ) which was developed to express time and other con-
straints of the embedded real-time applications. This specification introduces the
concept of schedulable objects, which are instances of classes that implement the
Schedulable interface, such as the RealtimeThread. It also specifies a set of classes
to store parameters that represent a particular resource demand from one or more
schedulable objects. For example, the ReleaseParameters class (superclass from
AperiodicParameters and PeriodicParameters) includes several useful parameters
for the specification of real-time requirements. Moreover, it supports the expression
of the following elements: time values (absolute and relative time), timers, periodic
and aperiodic tasks, asynchronous events and their handlers, and different schedul-
ing policies.

146

The next section a proposal to integrate the RTSJ-based API with the communi-
cation API trough a holistic scheduler that follows the FTT-CAN protocol will be
presented.

5 FTT-CAN Integration

In order to allow a RT-FemtoJava processor to communicate over a FTT-CAN net-
work, a FTT-CAN module was written in VHDL language. Advantages of this so-
lution from a software implementation are the lower jitter and lower processor uti-
lization. The main disadvantage is, clearly, higher die area.

It utilizes a CAN module that implements the native CAN protocol, that involves
data framing, bit synchronization, bit stuffing, CRC checking, bus arbitration and so
on. Taking advantage of that, the FTT-CAN module is built on top of the CAN mod-
ule, by means of finite state machines that manage the timing constraints imposed
by the FTT-CAN protocol.

Before synthesizing the project, one needs to specify if the node in question is
a possible master or not. Bus masters are responsible for generating the Trigger-
Message. They are also responsible for scheduling the TT messages. For this pur-
pose, it was used a dual-port RAM memory, allowing a future development of an
admission control system either by the RT-FemtoJava or a separate entity. In the
current version, the master node reads parameters -like period and phase - from this
memory, and schedules the messages with the granularity of one Elementary Cy-
cle, that means, the smaller period of a synchronous message is the period of the
Elementary Cycle.

By the start of the Trigger Message, the nodes set a global counter to 0 (zero),
so that all FTT-CAN nodes in the network are synchronized. This process avoids
priority inversion in the synchronous window because the transmission of the mes-
sage with the highest priority will not be delayed by any means, while in a soft-
ware implementation the transmission could be delayed by another thread or pro-
cess running in the processor. Bit-stuff pessimism in the synchronous window is
also avoided with the creation of time-slots that are longer than the longest message
(considering all possible bit stuffing).

The interface between the RT-FemtoJava and the FTT-CAN module is obtained
via memory-mapped registers. In the current configuration, the processor writes in
specific registers the message identifiers that it wishes to produce to or consume
from the bus. After that, the processor can write data in transmission registers that
will have identifiers previously configured and read data from reception registers.
The processor is responsible for polling a status register to know if determined mes-
sages have arrived or have been transmitted successfully.

R. K. A. Andrade, T. Alimena Del Grande, T. Bücker, C. E. Pereira

Design and Implementation of a FTT-CAN Communication Infra-Structure 147

6 A wireless approach for FTT

Additional to the us of a FTT-CAN approach, a wireless FTT interface was also
implemented on the top of IEEE 802.15.4 standard, taking advantage of the super-
frame structure, shown in figure 1. The superframe is bounded by the transmission
of periodic beacon frames, followed by a Contention Access Period (CAP) and an
optional contention free-period (CFP), used by low latency applications. A sim-
ple equivalence between the elementary cycle of FTT and this superframe structure
gives an interesting solution to develop a FTT wireless system.

Fig. 1 Exemple of Superframe Structure.

The FTT communication over the IEEE 802.15.4 standard was also written in
VHDL language and connected to the RT-FemtoJava. The master node, defined be-
fore synthesizing the project, broadcast the beacon frames at periodic intervals ac-
cording to the generics sets in the top of the entity. Like in the FTT-CAN module,
the scheduled of TT messages are supported by a dual-port RAM memory. In this
case, however, the memory must also contain the address of nodes able to transmit.
If any TT message is sent in the current elementary cycle, the master node sends the
correct CFP parameters to allocate a guaranteed time slot where only the scheduled
node can transmit.

Slave synchronization is done in every beacon frame receipt, when a counter
starts and produces the 15 time slots of the active superframe structure. In the CAP
region, when a node wants to transmit, the transceiver is set to energy detection
mode and returns an interrupt signalling whether the channel is busy or not. This
mechanism allows the traffic of asynchronous messages. How said in the last para-
graph, TT traffic are in the CFP region, where only the scheduled node can transmit.
Traffic isolation is promoted by the beacon frame subfield final CAP slot.

148

The interface between RT-FemtoJava and FTT module is the same defined in
the previous section. A little difference is related to the producer/consumer model
implemented, where slave nodes use a point-to-point communication with master to
produce its message and this one broadcasts it. Therefore, the master must consume
all network messages.

7 The FTT-CAN Middleware

Software is increasingly becoming the major cost factor for embedded devices.
Nowadays, with the growing complexity of DERTS, it is necessary to use tech-
niques that increase software productivity. In this context, a FTT-CAN middleware
was developed to simplify the design and implementation of real-time embedded
applications.

This middleware asserts more transparency in the implementation of distributed
and communicated Java objects. Furthermore, the middleware incorporates a holis-
tic scheduler that handles the scheduling of both messages and tasks, according
to system timing requirements. The figure 2 illustrates the proposed middleware -
which will be detailed in the next subsections.

Fig. 2 Design flow of the Platform.

R. K. A. Andrade, T. Alimena Del Grande, T. Bücker, C. E. Pereira

Design and Implementation of a FTT-CAN Communication Infra-Structure 149

7.1 The Framework

This framework is composed of a middleware and APIs who allows to abstract in-
herent details about the distribution and the communication protocol. Standalone
tasks must follow the RTSJ-based API, mentioned at Section 4. Communicating
tasks must be specified using primitives of the FTT-CAN API and their temporal
parameters using the RTSJ-based API.

The middleware identifies temporal tasks parameters and their messages and or-
ganize them to be used by the FTT-CAN Scheduler, that composes the FTT-CAN
Module. The messages are separated in asynchronous or event-triggered (ET) and
synchronous or time-triggered (TT) which are based at priority and periodicity, re-
spectively. Messages parameters are marshalled and unmarshalled by the middle-
ware, making the distribution transparent to programmers.

Communication facilities are provided through the APICOM for the RT-FemtoJava
processor, which adds an interface between the application layer and the commu-
nication system detailed in Section 5 and 6. The communication system was pro-
posed to provide synchronous and asynchronous message exchange among objects
running at different RT-FemtoJava processors into the same chip and/or running at
different nodes connected through a communication network. The API allows ap-
plications to establish a communication channel through the network, which is used
to send and receive messages. The service allows the assignment of different pri-
orities and periods to messages and runs in a multithread environment. From the
application point-of-view, the system is able to open and close connections, in a
client-server mode, or run in publisher-subscriber mode.

7.2 The Holistic Scheduler

According to the communication paradigm, every communicating task uses mes-
sages to exchange data with other tasks. However, at a first moment, the ET tasks
are not considered by holistic scheduling process, but they are equally supported by
the platform development. Although predictability is a requirement for both ET and
TT phases, our focus here is on the response time of the TT phase because it re-
quires a high degree of responsiveness (since TT are usually time critical with hard
real-time requirements).

The FTT-CAN Scheduler in the Master Node uses a table to make the global syn-
chronization to join the dispatching of tasks and messages exchanges. This table is
built by the holistic scheduler. The holistic scheduler creates a graph which contains
the order of dependences among communicating tasks. From this graph the sched-
uler is made by selecting tasks (node-centric) or messages (netcentric) and adapting
its dependences, which are known by through the graph, according to system timing
requirements. This scheduler follows the approach specified in [4].

150

8 Final Remarks

This paper presents an ongoing work that proposes a holistic scheduler component,
which will integrate an RTSJ-based API and a communication API. The selected
communication protocol is the FTT-CAN. This choice was made mainly due to
the characteristics of the FTT-CAN protocol, which can provide features such ad-
mission control and flexibility. Additionally, was implemented a wireless approach.
Both modules, FTT-CAN and wireless, are integrated to RTFemtoJava processor
and synthesized in a Virtex-II Pro Xilinx [5] FPGA.

A holistic scheduler was implemented, as well as the parameters describing com-
munication characteristics of task. Currently the system is being validated through
some case studies in order to ensure that the proposed scheduler meet all specified
application requirements. In future work, we intend to complete the middleware
integration to the platform and obtain results about jitter and latency.

References

1. L. Almeida, J. Fonseca, and P. Fonseca. The FTT-CAN Protocol: Why and How. IEEE Trans-
actions on Industrial Electronics, 49(6), December 2002.

2. F.H. Athaide, C.E. Pereira, and V.F. Silva. A new approach for time-triggered phase in the
FTT-CAN protocol a case study in an automotive system. In Proc. of RTSS, 2006.

3. P. Basanta-Val, L. Almeida, and M. Garca-Valls. Towards a synchronous scheduling service on
top of a unicast distributed real-time Java. In Proc. of Real Time and Embedded Technology
and Applications Symposium, 2007.

4. M. J. Calha. A holistic approach towards flexible distributed systems. Technical report, Uni-
versidade de Aveiro Departamento de Electrnica e Telecomunicaes, 2006.

5. http://www.xilinx.com.
6. S. Ito, L. Carro, and R.P. Jacobi. Making Java work for micro-controller applications. IEEE

Design & Test of Computers, 18(5):100–110, 2001.
7. M. A. Wehrmeister, C. E. Pereira, and L. B. Becker. Optimizing the generation of object-

oriented real-time embedded applications based on the real-time specification for Java. In Proc.
of DATE06, pages 806–811, Munich, Germany, 2006.

8. M.A. Wehrmeister, L.B. Becker, and C.E. Pereira. Optimizing real-time embedded systems
development using a RTSJ-based API. Lecture Notes in Computer Science, 3292:292, 2004.

R. K. A. Andrade, T. Alimena Del Grande, T. Bücker, C. E. Pereira

Communication Paradigms for
High-Integrity Distributed Systems
with Hard Real-Time Requirements

Santiago Urueña, Juan Zamorano, José A. Pulido, and Juan A. de la Puente

Abstract The development and maintenance of high-integrity software is very ex-
pensive, and a specialized development process is required due to its distinctive
characteristics. Namely, safety-critical systems usually execute over a distributed
embedded platform with few hardware resources which must provide real-time com-
munication and fault-tolerance. This work discusses the adequate communication
paradigms for high-integrity distributed applications with hard real-time require-
ments, and proposes a restricted middleware based on the current schedulability
theory which can be certified and capable to obtain the required predictability and
timeliness of this kind of systems.

1 Introduction

On-board embedded computers play a crucial role in spacecrafts, where they per-
form both platform control functions, such as guidance and navigation control or
telemetry and tele-command management, and payload specific functions, such as
instrument control and data acquisition. One distinctive characteristic of on-board
computer systems is that hardware resources are scarce, due to the need to use
radiation-hardware chips and limitations in weight and power consumption, and
these resources are distributed due to the physical distance between the instruments
and to replicate mission-critical components. Another key aspect of these systems
is the presence of high-integrity and hard real-time requirements, which raises the
need for a strict verification and validation (V&V) process both at the system and
software levels [1]. This new step in the development process is called certification.
It is a very expensive process which will shape the complete development tools and
methods of the system.

Santiago Urueña · Juan Zamorano · José A. Pulido · Juan A. de la Puente
Technical University of Madrid (UPM), Dept. of Telematic Systems Engineering (DIT), Spain.
e-mail: {suruena,jzamorano,pulido,jpuente}@dit.upm.es

Please use the following format when citing this chapter:

Urueña, S., et al., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded Systems:
Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 151–160.

152 Santiago Urueña et al.

It is worth noting that inside a high-integrity system not all the software has the
same criticality: while some applications have a direct implication in the safety of
the system, a fault in other parts of the code will result only in minor effects [2].
Therefore, not all the software is certified to the highest criticality level to save
costs. Ravenscar is a computational model designed for high-integrity, hard real-
time, embedded systems [3]. It is a profile that specifies the set of operations that
the real-time operating system (RTOS) has to provide, and also the set of forbidden
operations that would made the system unpredictable. On the one hand, Ravenscar
compliant real-time kernels have to provide less functionality than other RTOSs, and
therefore they are be smaller and easier to certify. On the other hand, applications
developed under the Ravenscar restrictions are suitable to temporal analysis.1

Due to the specific characteristics of this kind of systems a general purpose mid-
dleware cannot be used to develop high-integrity code. The objective of this paper is
to describe the design principles used in a safety-critical middleware for the Euro-
pean Space Agency (ESA), discussing the most adequate communication paradigms
and the requirements of a high-integrity middleware. In the end, the main goal is
to be able to analyze statically the schedulability of its hard real-time deadlines.
This paper is organized as follows. Section 2 describes the contributions and re-
lated work, while Section 3 sets the computational model. Section 4 defines a set
of restrictions for building safety-critical distributed systems, including the imple-
mentation requirements and an analysis of the adequate communication paradigms.
Finally, Section 5 summarizes the main conclusions of this work.

2 Contributions and related work

This paper builds upon current advances in scheduling theory for distributed hard
real-time systems. Tindell and Clark [4] extended the response time analysis tech-
niques used for event-triggered single processors to distributed systems, introducing
the concept of holistic schedulability. Later, Palencia and González Harbour [5] im-
proved the technique to reduce the pessimism of transactions.

The main objective of this work was the development of a Ravenscar-compliant
middleware for next-generation space-crafts. Specifically, the main contributions of
this paper are:

1. Specification of the distribution requirements of the aero-space industry;
2. Modelization and response time analysis of the specific distributed system;
3. Restrictions needed for a safety-critical middleware, and adequate communica-

tion paradigms.

Some of the restrictions specific to the Ada programming language were published
previously by the authors [6], but this paper extends that work and makes the re-
quirements language independent.

1 Actually Ravenscar is a village in England, where experts from industry and academy in high-
integrity and hard real-time systems met to define the profile.

Communication Paradigms for High-Integrity Distributed Systems 153

Kopetz elaborated the Time-Triggered Architecture (TTA) [7] to provide hard
real-time communication for safety-critical distributed systems. However, a time-
triggered middleware presents similar scalability problems for development and
maintenance than cyclic executives. In contrast, a Ravenscar-compliant middleware
supports time-triggered and event-triggered programming. Some past publications
about the specific topic of Ravenscar-compliant distributed systems exists [8], but
only discussing the research challenges.

3 Computational model

3.1 Industrial requirements

The following list of requirements has been extracted from the needs expressed
by different companies from the aero-space industry. Namely, they represent the
middleware requirements found during the development of different projects for
the European Space Agency (ESA), including self-maintained long-term satellites,
mission-critical unmanned space vehicles, and satellite fleets:

• Predictability: End-to-end transfers in bounded time for messages with hard
real-time deadlines.

• Fault tolerance: Replication of network links and/or routers for resilience to
hardware failures.

• Diagnostic information: The application should be able to know the status of a
node and communication links.

• Multicast communication: One-to-many communication, even if the network
does not support broadcasting operations.

• Message segmentation: The partitioning of messages greater than the maximum
transfer unit should be done by the middleware.

• Message forwarding: Transparent communication between nodes not directly
connected.

Some of these requirements complicate the implementation of the middleware
and the static analysis of the whole system. However, it should be noticed that not
all these requirements are needed in every application nor in every criticality level.
In fact, the system integrator should be able to disable the unwanted functionality
at design time to ease the certification of the system and to reduce the performance
penalty. Therefore, the middleware must be tailorable at compilation time to be
adapted to specific application needs.

154 Santiago Urueña et al.

3.2 Restrictions for the RTOS

As said above, the certification entailed by every safety-integrity system shapes its
development process, thus a strict set of restrictions is needed when developing
high-integrity software. These are the main restrictions dictated by the Ada 2005
Ravenscar Profile [9, § D.13.1] for the RTOS:

• A static number of threads and shared resources
• No thread termination (and no abortion)
• No dynamic memory at the kernel level
• Only a single thread can wait on a given condition variable

In addition, the threads are scheduled according to Fixed Priority Preemptive
Scheduling (FPPS), using the Immediate Ceiling Priority Protocol (ICPP) for shared
resources [10]. Thanks to these restrictions the implementation of the kernel is small
enough to be certified, while offering a sufficient set of services that allow the
schedulability analysis of the application. Another derived advantage for embed-
ded systems is that Ravenscar implementations require very low resources and have
a high performance. In addition, the ICPP assures that deadlocks cannot ever occur,
a highly desirable property specially for safety-critical systems.

4 A restricted middleware for high-integrity systems

4.1 Holistic schedulability analysis

Current mono-processor response-time analysis can evaluate a static number of pe-
riodic or sporadic tasks (i.e. threads), each having a worst-case execution time
(WCET), and synchronize by using a static number of shared resources. The
response-time analysis method has been also extended for distributed systems [4].
The holistic schedulability analysis assumes that each sender thread can send a fixed
set of messages, and no thread can receive more than one message. In addition, each
message must have a bounded size, and a fixed destination thread.

A transaction Γi, composed of a set of tasks τi, j with precedence relations, is
another important concept for the response time analysis of distributed systems. The
objective is to analyze the end-to-end response time of each transaction to assess
the schedulability of the system. And although each task of the system has a unique
priority, due to their precedence relations every task of a transaction (except the first
one) is activated by the preceding task of the transaction, even if the second one has
a higher priority. As a side note, the deadline of a task inside a transaction is usually
longer than its period because the transaction can start another activation even if the
last one is still running.

For example (see figure 1), the transaction Γ1 is composed of task τ1,1 (which
runs over the node N1), message m1,1 (transmitted via the network A), and task τ1,2

Communication Paradigms for High-Integrity Distributed Systems 155

Fig. 1 Example of a distributed transaction.

(executing inside N2). The transaction has a period T1 (i.e. the number of times the
transaction is activated per second), and τ1,2 has the offset Φ1,2 since the start of
transaction. Thus the network can be modeled as a CPU (but messages cannot be
preempted), and each message is like a task, with a fixed priority, a period, and a
worst-case transmission time. The original holistic schedulability method had been
improved with more exact response time analysis [5]. Later, the system model was
extended with the analysis of multiple events [11], a message can activate more than
one task, or also a task can be activated by multiple messages.

Although the computational model can be seen as too restrictive, it is rich enough
to provide the common services needed in a safety-critical system. However, cur-
rent response time analysis techniques require a single activation point for each task
(either an event for sporadic tasks or a timer for periodic ones). But in some com-
munication paradigms including Remote Procedure Call (RPC) and Remote Method
Invocation (RMI), the client thread sends a message to the server, and blocks until
the other thread sends another message with the response (two activation points). A
general method should be developed to analyze more than one activation point.

4.2 Modelization of synchronous calls

In this paper, each thread is modeled by n+1 tasks inside a transaction, where n is
the number of activation points of the thread. As can be seen in figure 2, although
the transaction Γ2 is composed by two threads, it is modelled as three tasks:

1. the sender thread sends a query to the server, and then performs a blocking re-
ceive operation (task τ2,1).

2. the server thread processes the petition and then sends-back the response (task
τ2,2).

3. finally, the message wakes-up the client thread and reads the answer (task τ2,3).

Although a RPC or RMI can be modeled using this technique, the analysis is not
completely accurate because multiple activations of a transaction can be executing at

1

1,1N1 (Sender)

N2 (Receiver)

1,1

1,2

T1 T1

1,2

1,2 1,2

NetA m1,1 m1,1

Message Message

156 Santiago Urueña et al.

Fig. 2 Model of a Remote Procedure Call.

the same time unlike an RPC (the client thread cannot start another activation until
the last one is complete). Blocking operations are required not only for RPC-like
operations, but also for message segmentation, and one-to-many communication in
a point-to-point topology or for networking technologies with no broadcast support.
It is worth noting that not all transactions are distributed. For example, using this
technique it is possible to model blocking system calls, like a read operation from
a file where the thread is blocked until the information is read from the hard disk.
However, all the tasks of the same thread share the same priority, thus the response
time analysis methods must be extended to cope with non-unique priorities.

4.3 Implementation requirements

Multiple design choices were studied when developing the middleware for this spe-
cific ESA project. It is desirable that a task invoking a remote operation does not
delegate the message generation (including data marshalling, message partitioning,
composition of message headers, and even message queueing) to another task to
avoid priority inversion. Priority inversion is an undesired effect typically found
when a task cannot execute until a lower-priority task exits from a shared resource.
Total priority inversion is in general not possible but it can (and must) be bounded.
From the point of view of the middleware, if the message generation is done by a
specific task of the communications stack then a high-priority task will be preempted
by this task even if the message is sent by another task with the lowest priority of the
node. Therefore, it is encouraged that the middleware code for message generation
is executed directly by the sender task, i.e. with its priority.

For the transfer of the message, there are typically two possible implementations:

1. middleware thread: the sender task puts its message into a buffer, which will be
sent by a sporadic thread of the middleware.

2. self service: the sender task calls the device driver directly.

2

2,1N1 (Client)

N2 (Server)

Query

Response

2,3

2,2

2,3

2,1

T2

Query

2,2

NetA m2,1 m2,2 m2,1

Communication Paradigms for High-Integrity Distributed Systems 157

The advantage of the first implementation is that the sender task can be completely
asynchronous. In contrast, the self-service model should have to wait until the mes-
sage is completely transferred to know the status of the sent operation. In the other
hand, the self-service implementation has a lower priority inversion.

Therefore, if the remote operation is asynchronous, the call to the middleware
can be fully non-blocking. However, if the operation is synchronous (e.g. a RPC)
the call will be blocking, and in addition the middleware must set a timer to detect
a communication problem, e.g. the message was lost or the receiver node is not re-
sponding. Otherwise, the sender thread will be blocked forever. It is worth noting
that message acknowledgement and retransmissions are not usually done by soft-
ware in a safety-critical distributed system because guaranteed delivery is provided
by the hardware communication bus.

Communication networks also introduce some priority inversion: The network
is normally non-preemptable, so if a low-priority message is being transferred then
another message with a higher priority cannot be sent until that frame is completely
transmitted. For that reason, the maximum size of a message must be bounded.
Of course, in the first implementation, the middleware thread will sent the output-
messages by priority.

At the destination node, the receiver thread should then process each call with
the priority specified in the message. The above guideline about message genera-
tion is also applicable at the receiver side of the middleware: it is desirable that
the composition and unmarshalling of the message are performed directly by the
receiver task. It should be noticed that each partition can still have an independent
run-time system. No clock synchronization is needed because the communication is
message oriented [12, p. 1.27], but of course a mechanism to obtain a certain degree
of common time is desirable in a real-time system.

In summary the implementation must document the architecture of the middle-
ware, specifying if any step is delegated by another task in the caller or called
node. Also, the metrics of the maximum blocking time of the biggest critical sec-
tion should also be documented, otherwise a complete response time analysis of the
whole system would be not possible.

4.4 Restrictions for the middleware

In addition to the restrictions for the RTOS explained in section 3.2, another set of
constraints is needed for safety-critical middlewares. As said above, the schedulabil-
ity theory assumes a static computational model, where the number of connections
and messages does not change at all during the mission. That is, there is a static
number of nodes, where no dynamic connections are allowed, and where all the
nodes perform a coordinated initialization to start the application at the same time
(in a real-time system it is not acceptable to enqueue a request until the server node
is active).

158 Santiago Urueña et al.

Nodes are not allowed to stop its execution, as enforced by the RTOS restriction
about no thread termination. And if the connections are not dynamic, there is a static
number of messages, and each one has a fixed origin and destination, as well as a
fixed priority. Finally, the computational model also assumes bounded size messages
to be able to compute the maximum transfer time. This does not mean that each
message has a fixed size but a maximum size limit.

Another implicit restriction is that no concurrent remote calls are allowed.
Therefore, while in a general-purpose middleware usually a thread pool serves all
requests—including calls to the same remote operation at the same time—in this
restricted middleware there is a unique thread per remote operation that receives
and processes each message. It is worth noting that an interesting property derived
from this restriction is that distributed deadlocks are not possible in this restricted
middleware, thus reducing the costs of the certification of the whole system [13].

In addition to the above restrictions which always must be enforced, there is also
another set of optional restrictions which is not deemed essential for all safety-
critical middlewares, but some kinds of distributed systems can benefit from it [6].
The key goal of these restrictions is to simplify the implementation of the middle-
ware, thus facilitating its certification, and to ease the response time analysis of
the system, reducing the main sources of pessimism and unpredictability. However,
some of these restrictions have no impact in the implementation of the middleware,
and even are difficult to detect violations statically.

The first optional restriction is to allow asynchronous calls only, i.e. to forbid
all blocking remote operations (like a remote procedure call). A related restriction
is “no segmentation”, so only messages up to the MTU are allowed. This avoids
a blocking send operation until all the parts of the message are sent. For the same
reasons, “no multicast” is also needed if the hardware does not support the broad-
casting of messages, however this restriction is always required to avoid the analysis
of multi-event systems.

Finally, it can be useful to enforce the no complex remote types rule, i.e. a param-
eter of a remote operation cannot be an unconstrained or recursive type (e.g. linked
list). With those types the exact size of the message cannot be computed until run-
time, including its maximum size. So thanks to this restriction the maximum size
of every message can be computed statically and thus the worst-case transfer time,
and in addition the middleware does not need to handle the serialization of complex
data [14].

4.5 Adequate Communication Paradigms

The communication paradigms supported in this Ravenscar-compliant middleware
includes message passing, remote procedure calls (RPC), and real-time publish/subscribe
(P/S). These paradigms can be implemented with little code, and they are supported
by current response time analysis techniques to asses the schedulability of the sys-
tem. But, due to its blocking nature, the RPC paradigm requires more code and

Communication Paradigms for High-Integrity Distributed Systems 159

timers than the the message passing or the P/S paradigm, and therefore it can be
more difficult to certify.

However, although the Remote Method Invocation (RMI) can also be analyzed
using similar techniques, in general it is difficult to ensure some restrictions in this
communication paradigm. For example, although the number of distributed objects
can be static, it is possible to send a remote reference to another node and therefore a
new connection would be created at run-time, clearly violating the restriction about
no dynamic connections. It is worth noting that OOP is not usually employed in
safety-critical software due to its highly dynamic nature.

The Distributed Shared Memory (DSM) paradigm also presents some problems
for safety-critical middlewares. The main advantage of DSM is that the programmer
does not have to write explicitly the data transfer because at run-time the middleware
transparently handles this, also easing the port of existing applications to distributed
platforms. But this transparency is difficult to modelize and thus to perform the
schedulability analysis of the application.

In summary, the message passing paradigm is well understood, and simple to
learn, codify and analyze, and therefore it is very adequate for the development
of high-integrity systems. The P/S paradigm, needed to fully meet the industrial
requirements because it allows multicast communications, is also adequate for a
safety-critical middleware because it can also be certified, although the response
time analysis of multi-event systems can be more difficult to perform. The RPC
paradigm can also successfully be used in a safety-critical middleware, although its
blocking nature makes harder the certification at the highest-criticality levels.

However, as said above the RMI and DSM paradigms are the less adequate of the
studied communication paradigms. Although shared memory can be used for inter-
partition communication inside a node (e.g. among different criticality levels), DSM
is not recommended for hard real-time communication in a safety-critical distributed
system.

5 Conclusions and future work

All safety-critical systems must be certified prior deployment, and thus adequate
development methods and tools must be used for this type of high-integrity soft-
ware (like the Ravenscar profile). This heavily affects the middleware, which usually
have to support hard real-time communication over a resource-constrained embed-
ded platform.

This paper has described the design of a Ravenscar-compliant safety-critical mid-
dleware with hard real-time deadlines for future projects of the European Space
Agency (ESA). After analysing the industrial requirements and the current schedu-
lability theory for distributed systems, a set of restrictions and implementation and
documentation requirements was proposed to allow certification of the middleware
and to perform the response time analysis of distributed applications.

160 Santiago Urueña et al.

Finally, it was discussed the most adequate communication paradigms for this
kind of systems. Simple paradigms like message passing or publish/subscribe are
expressive-enough and can be implemented and analyzed more easily than remote
procedure calls, distributed shared objects, or distributed shared memory.

Acknowledgements This work has been funded in part by the Spanish Ministry of Science and
Technology (MCYT), project TIC2005-08665-C03-01 (THREAD), by the IST Programme of the
European Commission under project IST-004033 (ASSERT), and by the Council for Education of
the Community of Madrid and the European Social Fund.

References

1. ECSS. ECSS-Q-80B Space Product Assurance — Software Product Assurance, 2003. Avail-
able from ESA.

2. RTCA Inc. Software Considerations in Airborne Systems and Equipment Certification —
RTCA/DO-178B, 2002.

3. ISO/IEC. TR 24718:2005 — Guide for the use of the Ada Ravenscar Profile in high integrity
systems, 2005. Based on the University of York Technical Report YCS-2003-348 (2003).

4. Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard real-time
systems. Microprocessing and Microprogramming, 40(2–3):117–134, April 1994. Euromicro
Journal (Special Issue on Parallel Embedded Real-Time Systems).

5. Juan Carlos Palencia Gutiérrez and Michael González Harbour. Exploiting precedence rela-
tions in the schedulability analysis of distributed real-time systems. In RTSS 1999: Proceed-
ings of the 20th IEEE Real-Time Systems Symposium, pages 328–339, December 1999.

6. Santiago Urueña and Juan Zamorano. Building high-integrity distributed systems with Raven-
scar restrictions. volume XXVII, pages 29–36, August 2007. Proceedings of the 13th Inter-
national Real-Time Ada Workshop (IRTAW 2007).

7. Hermann Kopetz and Günther Bauer. The time-triggered architecture. Proceedings of the
IEEE, 91(1):112–126, January 2003.

8. Neil Audsley and Andy Wellings. Issues with using Ravenscar and the Ada distributed sys-
tems annex for high-integrity systems. In IRTAW ’00: Proceedings of the 10th international
workshop on Real-time Ada workshop, pages 33–39, New York, NY, USA, 2001. ACM Press.

9. ISO SC22/WG9. Ada 2005 Annotated Reference Manual. ISO/IEC 8652:1995(E) with Tech-
nical Corrigendum 1 and Amendment 1, 2006. Available on http://www.adaic.com/
standards/ada05.html.

10. Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. IEEE Tr. on Computers, 39(9), 1990.

11. J. Javier Gutiérrez, J. Carlos Palencia, and Michael González Harbour. Schedulability analysis
of distributed hard real-time systems with multiple- event synchronization. In Proc. 12th
Euromicro Conference on Real-Time Systems, pages 15–24. IEEE CS Press, June 2000.

12. Juan Carlos Palencia Gutiérrez. Análisis de planificabilidad de Sistemas Distribuidos de
Tiempo Real basados en prioridades fijas. PhD thesis, Universidad de Cantabria, 1999. Su-
pervisor: Michael González Harbour.

13. César Sánchez, Henny B. Sipma, Zohar Manna, Venkita Subramonian, and Christopher Gill.
On efficient distributed deadlock avoidance for real-time and embedded systems. In Proceed-
ings of the 20th International Parallel and Distributed Processing Symposium, 2006. IPDPS
2006. IEEE Computer Society, April 2006.

14. Daniel Tejera, Alejandro Alonso, and Miguel Ángel de Miguel. Predictable serialization in
Java. In IEEE International Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC’07), May 2007.

TinyOS Extensions for a Wireless Sensor
Network Node Based on a Dynamically
Reconfigurable Processor

Enkhbold Ochirsuren, Heiko Hinkelmann, Leandro Soares Indrusiak, and Manfred
Glesner

Abstract Wireless sensor networks (WSNs) present design issues and challenges
in both hardware and software platform development. This paper presents the im-
plementation of a hardware-dependent component library that extends TinyOS in
order to create an abstraction layer on top of a dynamically reconfigurable hardware
architecture. Such hardware architecture is based on a SPARC-compliant processor
and it is the core component of a generic sensor node platform targeted for future
smart sensor networks. Considered as an application programming interface (API),
the components of the implemented library allow the application developer to fully
exploit the functionality of the dynamically reconfigurable function unit (RFU). Be-
sides the RFU, the library also provides an interface to other standard system periph-
erals such as a timer, sensor, and radio transceiver. A simple TinyOS application,
which includes gathering data from an attached sensor and wirelessly communicat-
ing to other sensor nodes has been demonstrated on the prototype nodes. In addition,
a software visualization tool has been developed and integrated to a commercial
logic simulator in order to facilitate software debugging during the cycle-accurate
simulation of the hardware architecture model, described in the VHDL.

1 Introduction

As being a networked embedded system, WSNs present design issues and chal-
lenges in both hardware and software platform development. Generally, the hard-
ware architecture of a wireless sensor node comprises of three components: pro-
cessor, communication interface and sensors. The previous survey of the state-of-
the-art sensor node platforms has shown that the main processing units of currently
existing generic sensor node platforms are mostly based on the low-power, 8/16-bit

Enkhbold Ochirsuren · Heiko Hinkelmann · Leandro Soares Indrusiak · Manfred Glesner
Institute of Microelectronic Systems - Darmstadt University of Technology, Karlstrasse 15, 64283
Darmstadt, Germany. e-mail: boldoo, hinkelmann, indrusiak, glesner@mes.tu-darmstadt.de

Please use the following format when citing this chapter:

Ochirsuren, E., et al., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded Systems:
Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 161–170.

162 E. Ochirsuren, H. Hinkelmann, L. S. Indrusiak, M. Glesner

microcontrollers [7]. For the high-performance sensor nodes, the 16/32-bit RISC
processor cores are utilized. All these processor-based platforms can provide flexi-
bility so that they can be used for a wide variety of WSN applications. But they can
suffer from low performance and low energy efficiency. This is often dealt by us-
ing ASICs. Even though ASIC-based, special-purpose sensor nodes can be utilized
for some extremely low-power applications, they are not flexible and has limited
functionality making it difficult to incorporate new applications. An alternative ap-
proach would be to integrate a hardware accelerator in the processing core of a
sensor node. This would give us flexibility as well the meet the energy and perfor-
mance requirements. Such hardware accelerators are often intended to execute spe-
cific computation-intensive tasks or tasks with real-time requirements, such as se-
cure high-speed communication protocols, which are inefficient on general-purpose
processors.

A new generic sensor node architecture for future smart sensor node platforms
has been proposed in [9]. It includes a coarse-grained, domain-specific RFU in a
SPARC-compliant processor core to achieve high energy efficiency. Dynamic re-
configuration technique that changes the hardware functionality quickly during run-
time is used to reconfigure the RFU.

This paper presents an alternative operating system and its programmability sup-
port for a WSN node based on such a dynamically reconfigurable processor. The ab-
straction of the target sensor node architecture is implemented on top of the TinyOS
operating system [8].

The remaining paper is structured as follows. Section 2 gives an overview on the
integration of reconfigurable hardware into the generic sensor node architecture and
the TinyOS operating system. Section 3 describes the new target architecture for a
generic sensor node platform. Section 4 presents TinyOS extensions for the target
architecture. The TinyOS portability is evaluated in Section 5, and the paper ends
with a conclusion and an outlook on future work.

2 Related work

Although, the processing units of currently existing generic sensor nodes are mostly
based on either microcontroller or microprocessor, there have been a few efforts to
integrate reconfigurable hardware into a sensor node architecture to increase perfor-
mance and lifetime of a sensor node.

A conceptual sensor node architecture that includes reconfigurable hardware has
been proposed in PicoNode [13]. In this architecture reconfigurable modules have
been used in both processing and communication components to provide ultra-low
power operation. Modular construction idea of a versatile sensor node for WSNs
has been described in [12]. Here, a FPGA coupled with a microprocessor comprises
the processing unit of the sensor node and this FPGA is reconfigured to deal with
complex signal processing tasks, hence decreasing the load on the microprocessor.

TinyOS Extensions for a WSN Node Based on a Dynamically Reconfigurable Processor 163

In order to effectively manage limited hardware capabilities and to support con-
current operations, an operating system is often needed for a sensor node. Many
WSN applications have been developed on top of TinyOS, an open-source run-
time environment designed for sensor network nodes. It is specialized for use on
extremely resource constrained embedded systems and employs an event-driven ex-
ecution model. This execution model allows the underlying hardware to operate
relatively longer without battery re-charge by putting it into sleep mode when there
no event occurs. Also, component based modular design enables the minimal code
size and allows rapid application development by wiring only necessary compo-
nents. A TinyOS program consists of a scheduler and components that are written
in a nesC [6] programming language, which is an extension to the C language.

3 The new target architecture of the generic sensor node
platform

The target sensor node architecture that has been used within this work is depicted
in Fig. 1. It consists of a processing unit that is based on a RISC processor with a
RFU; configuration, instruction and data memories; on-chip peripherals such as an
interrupt controller, timer, and UART, generic sensor and transceiver interfaces; a
simple bus and its arbiter module.

3.1 The dynamically reconfigurable processor

The processing unit of the architecture consists of a 32-bit LEON2 processor [5],
which is the single threaded, SPARC-compliant RISC processor. The RFU is di-
rectly added into the processors instruction pipeline so that it can process the pre-
defined computational-intensive tasks with minimumal processor intervention. For
efficiency reason, the original processor architecture has been slightly modified. Its

Fig. 1 The architecture of the generic sensor node platform.

Sensor
Generic
Sensor

Interface

LEON2 processor core

Data
Memory

Instruction
Memory

Configuration
Memory

Transceiver
Interface Transceiver

UART

Timer
Interrupt-
Controller

Bus
Arbiter

Wishbone Bus

RFURFU
Control

DataInstruction

164 E. Ochirsuren, H. Hinkelmann, L. S. Indrusiak, M. Glesner

caches and unnecessary peripherals were removed and the AMBA bus was replaced
by a simpler wishbone bus.

The current implementation of the RFU supports following three functions:

• coding and decoding of the Cyclic Redundancy Check (CRC) with code lengths
up to 32 bit

• coding and decoding of Bose-Chaudhuri-Hocquenghem (BCH) codes with code
length up to 255 bit and with error correction capabilities of up to 16 errors

• encryption and decryption of the Advanced Encryption Standard (AES) with a
data block size of 128 bit and key lengths of 128, 192 and 256 bit

A brief description of the overall RFU control, data path and the configuration
mechanism is given in the next subsections.

3.2 The RFU control and data path

The RFU is controlled by three special instructions, which perform single- and
multi-cycle operations on the RFU and reconfiguration: single-cycle execution
(ESR), multi-cycle execution (EMR), and reconfiguration (CRT). These special in-
structions have been added to the original SPARC V8 instruction set. The EMR and
CRT instructions are executed independently by the RFU, by allowing the processor
to execute instructions in parallel with the RFU.

The RFU’s data path includes specifically tailored modules for error correction
and encryption algorithms, such as a multiply accumulate module (MAC), an inver-
sion module, registers, a local memory and a memory access unit as well as flexible
interconnections. The MAC module is based on Galois Field (GF) multiplier and GF
adder cells. The inversion module performs GF division operation that is required
by the AES algorithm. In order to increase local storage capabilities the registers
and the memory modules have been implemented. The memory module can be con-
figured either as look-up table for logic operations or a FIFO buffer with parame-
terized width and depth. The memory access unit supports block data computation
and packet processing by reading or writing data from/to memory consecutively,
starting from the given start address.

3.3 The reconfiguration mechanism

A two-layer reconfiguration mechanism is specially developed to allow rapid recon-
figuration within a function and between different functions.

In order to provide fast reconfiguration, a number of multi-context configuration
tables and a reconfigurable look-up table is utilized. The multi-context configuration
tables are responsible for storing several configurations for each module of the data
path. A desired configuration can then be selected with a special tag within one cy-

TinyOS Extensions for a WSN Node Based on a Dynamically Reconfigurable Processor 165

cle. Tag generation is done by the reconfigurable look-up table, which also specifies
the sequence of tags for multi-cycle operations and allows jumps and loops. Hence,
the RFU can autonomously execute very long computations that comprise of multi-
ple cycles. This tag-driven reconfiguration belongs to the first layer reconfiguration.

Loading of configuration data from an external configuration memory to these
tables becomes the second layer reconfiguration. For this purpose, the compressed
control information, which is called a reconfiguration profile, is composed and
stored in the configuration memory along with complete configuration data. The
profile exactly specifies how many entries need to be loaded to each table. In addi-
tion, a task manager module monitors reconfiguration process by verifying the cur-
rent configuration in the tables and can skip unnecessary configuration overhead.
As a result, the reconfiguration latency achieved is one cycle to reconfigure within
a function, and less than hundred cycles to completely reconfigure an another func-
tion.

4 The TinyOS extensions for the target architecture

Even though TinyOS supports several existing sensor node platforms, none of them
uses a SPARC-compliant processor as a processing unit. Thus, it requires the pre-
liminary work of porting TinyOS to the target hardware architecture. The whole
porting process will be briefly described in the next subsections according to the
completion order.

4.1 Platform definitions

In order to define and locate platform specific files, a new subdirectory, called
“leon2mote”, with associated files has been created in the TinyOS directory tree.
These files include: “leon.h”, “leon2 hardware.h” and “hardware.h”. The “leon.h”
file includes details about the LEON2 processor, whereas the “leon2 hardware.h”
and “hardware.h” files contain macros for pin assignment, functions for supporting
atomic statements and other specific hardware definitions for the sensor node.

4.2 Hardware presentation layers

The TinyOS hardware presentation layers (HPLs) are the lowest level components
that directly interact with the underlying hardware. They access the hardware in the
usual way, either by memory or by port mapped input/output (I/O). In the reverse
direction, the hardware can request services by signalling an interrupt. Using this

166 E. Ochirsuren, H. Hinkelmann, L. S. Indrusiak, M. Glesner

communication scheme, the HPLs abstract the details of the hardware and provide
a more usable interface for the upper layer components.

Even though each HPL component will be as unique as the underlying hardware,
all of them will have a similar general structure. Each HPL component should have:

• commands for initialization, starting and stopping of the hardware that are nec-
essary for effective power management policy

• “get” and “set” commands for the registers that control the operation of the cor-
responding hardware

• commands with descriptive names for the most frequently used operations
• commands for enabling and disabling interrupts triggered by the hardware
• interrupt handlers for the interrupts that are triggered by the hardware

According to the target architecture description, HPLs for the hardware initial-
ization, LEDs, timer, sensor and radio interfaces, and the RFU have been imple-
mented. With exception of the RFU, the rest for the underlying hardware module
are accessed by memory mapped I/O addresses. The timer, sensor and radio inter-
faces respond to the overlaying HPLs by generating interrupts that are defined in
the LEON2 interrupt assignment scheme. Table 1 shows all HPLs and the system
components that have been developed within this work.

Table 1 The developed TinyOS components.

Component type Component name Description
HPLInitM.nc HPL for the hardware initialization
HPLTimer.nc HPL for the timer unit of the LEON2 processor

Hardware HPLLeds.nc HPL for the LEDs attached to the prototype board
specific HPLRfmRx.nc HPL for the radio interface (receiver mode)
HPLs HPLRfmTx.nc HPL for the radio interface (transmitter mode)

HPLPhotoM.nc HPL for the sensor interface
HPLRFU CRC.nc HPL for the RFU (CRC checksum calculation)
HPLRFU AES.nc HPL for the RFU (AES block (en)-decryption)
LeonTimerM.nc A system timer component

System LeonSenseToInt.nc Gathers sensor sample and displays to the LEDs
components LeonIntToRfmM.nc Sends data to the radio interface

LeonRfmToIntM.nc Receives data from the radio interface
AESM.nc An AES encryption and decryption component

In case of the RFU, the implementation of associated HPLs is different than
others. For each function (cf. Sect. 3.1) that is provided by the RFU, a number of
task specific subfunctions are assigned. Each task is associated with one specific
function of the RFU with fixed parameters, like 8-bit CRC checksum calculation of
a 32-bit data block. Generally, tasks are executed in the RFU in following steps:

• allocate a new task and reconfigure the RFU for that task (CRT instruction)
• load the required parameters for the task (mainly ESR instruction)
• execute the task and return a result (ESR and/or EMR instructions)

TinyOS Extensions for a WSN Node Based on a Dynamically Reconfigurable Processor 167

Hence, each of these steps is defined as a subfunction and further these subfunctions
are used in creating a task specific HPL for the RFU.

Two distinct HPLs have been implemented for the RFU: “HPLRFU CRC.nc”
and “HPLRFU AES.nc”. The former HPL sets up the RFU for 8-bit CRC checksum
calculation on 32-bit data block, starts the calculation in the RFU and returns a
resulting checksum. The latter HPL reconfigures the RFU for the AES encryption
and decryption algorithm with 128-bit key, initiates the algorithm in the RFU and
returns a cipher or decrypted data, each having 128-bit block size.

All subfunction definitions are packed in an external library. As stated in Sect. 3.2,
the RFU introduces three new instructions for reconfiguration and execution pur-
pose. In order to make these new instructions available to the standard cross-
compiler for the LEON2 processor, compiler’s source code is modified by including
the mnemonics of these new instructions.

4.3 System components

A TinyOS system component provides a concrete system service to the overlying
application components. It can be used by any application without modifications.

The typical system service in TinyOS is a system timer that can function as mul-
tiple timers, each of which can be managed independently. For this purpose the first
timer of the LEON2 timer unit has been chosen. An implementation of the system
timer component, “LeonTimerM.nc”, has been derived from the original TinyOS
timer component “TimerM.nc”. The main reason of such a distinct timer component
is regarding to the operational mode of the LEON2 processors timer unit. The timer
unit decrements its counter value on each timer tick and generates a timer interrupt
when the counter value underflows. Therefore, the only difference between them is
a modification that reflects such behaviour to the “Timer” interface implementation.

A new block cipher component, “AESM.nc”, that performs the AES encryption
and decryption has been implemented. The component considers an optimized soft-
ware implementation of the AES algorithm on 32-bit platforms proposed in [1].
The applied strategy is to restructure the standard algorithm by introducing a tran-
posed version of the state matrix. Due to the transposed state matrix considerable
amount of computation is saved by eliminating the rotation operations both from
MixColumns and Inverse MixColumns, resulting a performance gain. Moverover,
it employs only the nonlinear byte substitution tables (Sbox and Inverse Sbox) as
look-up tables to keep the required memory as less as possible.

The list of the developed system components is given in Table 1.

168 E. Ochirsuren, H. Hinkelmann, L. S. Indrusiak, M. Glesner

5 The validation and evaluation of TinyOS porting

In order to validate the TinyOS porting and demonstrate a typical sensor node op-
eration, the following TinyOS application was developed. One node periodically
gathers samples from a light sensor, displays light intensity on the LEDs and sends
the samples wirelessly to other nodes. Other nodes listen to the radio interface until
data is received. When the transmitted data is received, they display it on the LEDs
and wait for next reception. We have not used any networking mechanism so there
is neither addressing nor routing algorithms included. Hence, our applications are
not directly similar to the standard “SenseToRfm” and “RfmToLeds” applications.

The validation test that checks TinyOS port is done in the ModelSim logic simu-
lator by simulating a VHDL model of the sensor node architecture programmed with
TinyOS application code. In order to track software execution on VHDL model,
an additional monitoring tool has been developed and integrated to ModelSim (cf.
Fig. 2). During VHDL simulations, it informs component interactions of the cur-
rently executing TinyOS application with exact timing information. Besides that it
shows the current state of the LEON2 processor core, which includes control/state
register contents (%psr, %tbr, %wim), register file contents (%g0-%g7, %l0-%l7,
%i0-%i7), and state of all the pipeline stages.

Fig. 2 The GUI of the monitoring tool added to ModelSim.

The benefit of the RFU is proved by the execution time analysis on the example
applications. In order to show the impact of the RFU on computing a CRC checksum
and encrypting a cipher by the AES algorithm, a couple of example applications are
developed for each case: one uses a software (nesC) component and other one uses
RFU. It can be obviously seen that the execution of CRC and AES functions in RFU
is much faster than if they are executed in software (cf. Table 2). The speed-up factor
of up to 93 and 71 can be reached compared to the software implementations.

For demonstration of example applications, prototypes that consist of an FPGA
board and an additional board have been used. In the FPGA board the complete sen-

TinyOS Extensions for a WSN Node Based on a Dynamically Reconfigurable Processor 169

Table 2 Execution time comparison.

Function name Version Execution, cycles
CRC RFU 11

software (nesC) 1029
AES RFU 238
(encryption) software (nesC) 17093

sor node design, including processor, RFU, memories, peripherals, interfaces and
bus, is implemented. On the additional board the Xemics DP1203 radio transceiver,
a planar antenna and ten LEDs, and extension pins are mounted.

The portability of TinyOS has been evaluated by code size and concurrency po-
tential.

A TinyOS application code size should be as little as possible to fit in resource
constraint hardware. Compared to the compiled applications for the Mica mote,
code size of our test applications are quite large (cf. Table 3). The reason is that
the code includes additional 9Kbytes of code that includes processor boot sequence
(1.5KB), trap table (4KB), trap handling routines (2KB), and processor specific con-
stants (1KB). While the amount of required instruction and data memory seems to
be large, it is still in the range that most sensor nodes have [2].

Table 3 Code size comparison.

Application Mica mote, bytes LEON2+RFU, bytes
name ROM RAM ROM RAM
Blink 1652 48 14416 1780
Sense 3602 83 15408 1780
RfmToLeds 7538 280 17072 1804
SenseToRfm 9970 372 17728 1796

The main metric for the concurrency potential is context switching speed. The
most expensive switching is related to the hardware interrupt handling. On an aver-
age it takes around 75 clock cycles to signal the respective event after a hardware
interrupt is triggered.

6 Conclusion and future work

This paper presents the first port of the TinyOS operating system (version 1.x) to a
new generic wireless sensor node platform that is based on the customized LEON2
RISC processor with the integrated dynamically reconfigurable function unit (RFU).
The most common TinyOS components that can be contained in every application
have been implemented and tested by using both the commercial hardware simu-
lator and FPGA-based prototype nodes. The analyses from compilations show that
the amount of required memories is still within the range that the most existing

170 E. Ochirsuren, H. Hinkelmann, L. S. Indrusiak, M. Glesner

generic sensor node platforms have. From the simulations, it was shown that the
RFU significantly speeds up error checking and data (en)-decryption processes.

In order to test the TinyOS porting and track software execution during simula-
tion, an additional monitoring tool has been developed and integrated to the com-
mercial hardware simulator, ModelSim. The monitoring tool facilitates software
debugging on cycle-accurate simulation of any LEON2 processor based system-
on-chip (SoC) design.

The further work is directed to improve the current extension and add network
simulation. Hence, some work will be done towards to support the Active Messaging
(AM) protocol stack [3], which is basic communication protocol for the TinyOS
applications. Currently, the TinyOS based sensor network models are only simulated
in TOSSIM [10], a TinyOS simulator with networking support. Therefore, there is a
necessity to implement the TOSSIM components for the target platform and added
to the TOSSIM library. The TOSSIM components can later be used in other existing
frameworks for modelling wireless systems, such as Viptos [4] and SENSIM [11].

References

1. G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti, S. Marchesin, Efficient software imple-
mentation of AES on 32-bit platforms, CHES ’02: Revised Papers from the 4th International
Workshop on Cryptographic Hardware and Embedded Systems, 2003, pp. 159–171.

2. J. Beutel, Metrics for sensor network platforms, REALWSN’06: Proceedings of the ACM
Workshop on Real-World Wireless Sensor Networks, 2006, pp. 26–30.

3. P. Buonadonna, J. Hill, D. Culler, Active message communication for tiny networked sensors,
Submitted to IEEE INFOCOM 2001, 2001.

4. E. Cheong, E. A. Lee, Y. Zhao, Viptos: A graphical development and simulation environment
for TinyOS-based wireless sensor networks, SenSys ’05: Proceedings of the 3rd International
Conference on Embedded Networked Sensor Systems, 2005, pp. 302–302.

5. J. Gaisler, LEON2 processor users manual, version 1.0.21 XST edition, Available at Gaisler
Research. http://www.gaisler.com. Nov. 2003.

6. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler, The nesC language: A holis-
tic approach to networked embedded systems, PLDI ’03: Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation, 2003, pp. 1–11.

7. J. Hill, M. Horton, R. Kling, L. Krishnamurthy, The platforms enabling wireless sensor net-
works, Commun. ACM, Vol. 47 (2004) No. 6, pp. 41–46.

8. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, System architecture directions
for networked sensors, SIGPLAN Not., Vol. 35 (2000), No. 11, pp. 93–104.

9. H. Hinkelmann, P. Zipf, M. Glesner, A domain-specific dynamically reconfigurable hard-
ware platform for wireless sensor networks, ICFPT ’07: International Conference on Field-
Programmable Technology, 2007, pp. 313–316.

10. P. Levis et al., TOSSIM: Accurate and scalable simulation of entire TinyOS applications,
Proceedings of the First ACM Conference on Embedded Networked Sensor Systems (SenSys
2003), 2003.

11. C. Mallanda, A. Suri, V. Kunchakarra, S. S. Iyengar, A. Durresi, Simulating wireless sensor
networks with OMNET++, Submitted to IEEE Computers 2005, 2005.

12. J. Portilla, A. de Castro, E. de la Torre, A modular architecture for nodes in wireless sensor
networks, Journal of Universal Computer Science, Vol. 12 (2006), pp. 328–339.

13. J. M. Rabaey, M. J. Ammer, J. L. da Silva, D. Patel, S. Roundy, PicoRadio supports ad hoc
ultra-low power wireless networking, Computer, Vol. 33 (2000) No. 7, pp. 42–48

Scheduling Dependent Distributable Real-Time
Threads in Dynamic Networked Embedded
Systems

Sherif Fahmy, Binoy Ravindran, and E. D. Jensen

Abstract We consider scheduling distributable real-time threads with dependen-
cies (e.g, due to synchronization) in partially synchronous systems in the pres-
ence of node failure. We present a distributed real-time scheduling algorithm called
DQBUA. The algorithm uses quorum systems to coordinate nodes’ activities when
constructing a global schedule. DBQUA detects and resolves distributed deadlock
in a timely manner and allows threads to access resources in order of their potential
utility to the system. Our main contribution is handling resource dependencies using
a distributed scheduling algorithm.

1 Introduction

Some emerging networked embedded systems are dynamic in the sense that they
operate in environments with uncertain properties (e.g., [1]). These uncertainties in-
clude transient and sustained resource overloads (due to context-dependent activity
execution times), arbitrary activity arrivals and completions, and arbitrary node fail-
ures and message losses. Reasoning about end-to-end timeliness is a difficult and
unsolved problem in such systems. Another distinguishing feature of such systems
is their relatively long activity execution time scales (e.g., milliseconds to minutes),
which permits more time-costly real-time resource management.

Maintaining end-to-end properties (e.g., timeliness, connectivity) of a control or
information flow requires a model of the flow’s locus in space and time that can
be reasoned about. Such a model facilitates reasoning about the contention for re-
sources that occur along the flow’s locus and resolving those contentions to seek
optimal system-wide end-to-end timeliness. The distributable thread programming

Sherif Fahmy · Binoy Ravindran
ECE Dept., Virginia Tech, Blacksburg, VA 24061, USA, e-mail: {fahmy,binoy}@vt.edu

E. D. Jensen
The MITRE Corporation, Bedford, MA 01730, USA, e-mail: jensen@mitre.org

Please use the following format when citing this chapter:

Fahmy, S., Ravindran, B. and Jensen, E.D., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed
Embedded Systems: Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer),
pp. 171–180.

172 Sherif Fahmy, Binoy Ravindran, and E. D. Jensen

abstraction which first appeared in the Alpha OS [3], and later in the Real-Time
CORBA 1.2 standard, directly provides such a model as their first-class program-
ming and scheduling abstraction. A distributable thread is a single thread of execu-
tion with a globally unique identity that transparently extends and retracts through
local and remote objects. We focus on distributable threads as our programming
abstraction, and hereafter, refer to them as threads, except as necessary for clarity.

Contributions. In this paper, we consider the problem of scheduling dependent
threads in the presence of the previously mentioned uncertainties. Past efforts on
thread scheduling (e.g., see [6] and references therein) can be broadly categorized
into two classes: independent node scheduling and collaborative scheduling. In the
independent scheduling approach, threads are scheduled at nodes using propagated
thread scheduling parameters and without any interaction with other nodes. Thread
faults are managed by integrity protocols that run concurrent to thread execution.
Integrity protocols employ failure detectors (or FDs), and use them to detect thread
failures. In the collaborative scheduling approach, nodes explicitly cooperate to con-
struct system-wide thread schedules, detecting node failures using FDs while doing
so. We design a collaborative thread scheduling algorithm, DQBUA, that can handle
dependencies. To the best of our knowledge, this is the first collaborative schedul-
ing algorithm to consider dependencies. We compare DQBUA to RTG-DS [8], a
dependent thread scheduling algorithm that uses gossip ro improve the reliability of
the communication layer and to find the next head node of a thread. RTG-DS falls
under the independent category of thread scheduling algorithms.

2 Models and Objective

Distributable Thread Abstraction. Distributable threads execute in local and remote
objects by location-independent invocations and returns. The portion of a thread
executing an object operation is called a thread segment. Thus, a thread can be
viewed as being composed of a concatenation of thread segments. A thread can
also be viewed as being composed of a sequence of sections, where a section is a
maximal length sequence of contiguous thread segments on a node.

We assume that execution time estimates of sections of a thread are known when
it arrives into the system. The sequence of remote invocations and returns made by
a thread can typically be estimated by analyzing the thread code. The total number
of sections of a thread is thus assumed to be known a-priori. The application is thus
comprised of a set of threads, denoted T = {T1,T2, . . .} and the set of sections of a
thread Ti is denoted as [Si

1,S
i
2, . . . ,S

i
k]. See [7] for more details.

Timeliness Model. A thread’s time constraint is expressed using a Time/Utility
Function (TUF) [9]. A TUF decouples the urgency of a thread from its importance.
This is useful since the urgency of a thread may be orthogonal to its importance.
A thread Ti’s TUF is denoted as Ui (t). A classical deadline is unit-valued—i.e.,
Ui(t) = {0,1}, since importance is not considered. Downward step TUFs generalize
classical deadlines where Ui(t) = {0,{m}}. We focus on downward step TUFs, and

Scheduling Dependent Distributable Real-Time Threads 173

denote the maximum, constant utility of a TUF Ui (t), simply as Ui. Each TUF has
an initial time Ii, which is the earliest time for which the TUF is defined, and a
termination time Xi, which, for a downward step TUF, is its discontinuity point.
Ui (t) > 0,∀t ∈ [Ii,Xi] and Ui (t) = 0,∀t /∈ [Ii,Xi] ,∀i.

System Model. We consider a networked embedded system to consist of a set of
client nodes Π c = {1,2, · · · ,N} and a set of server nodes Π = {1,2, · · · ,n} (server
and client are logical designations given to nodes to describe the algorithm’s behav-
ior). Bi-directional logical communication channels are assumed to exist between
every client-server and client-client pair. We also assume that these basic commu-
nication channels may lose messages with probability p, and communication delay
is described by some probability distribution. On top of this basic communication
channel, we consider a reliable communication protocol that delivers a message to
its destination in probabilistically bounded time provided that the sender and re-
ceiver both remain correct, using the standard technique of sequence numbers and
retransmissions. We assume that each node is equipped with two processors (a pro-
cessor that executes thread sections on the node and a scheduling co-processor as
in [3]), have access to GPS clocks that provides each node with a UTC time-source
with nanosecond accuracy (e.g., [11]) and are equipped with appropriately tuned
QoS failure detectors (FDs) [2] (see [7] for further details).

Exceptions and Abort Model. Each section of a thread has an associated excep-
tion handler. We consider a termination model for thread failures including time-
constraint violations and node failures. If either of these events occur, exception
handlers are triggered to restore the system to a safe state. The exception handlers
we consider have time constraints expressed as relative deadlines. See [7] for details.

Failure Model. Nodes are subject to crash failures. When a process crashes, it
loses its state memory — i.e., there is no persistent storage. If a crashed client node
recovers at a later time, we consider it a new node since it has already lost all of its
former execution context. A client node is correct if it does not crash; it is faulty if
it is not correct. In the case of a server crash, it may either recover or be replaced
by a new server assuming the same server name (using DNS or DHT — e.g, [5] —
technology). We model both cases as server recovery. Since crashes are associated
with memory loss, recovered servers start from their initial state. A server is correct
if it does not fail; it is faulty if it is not correct. DQBUA tolerates up to N−1 client
failures and up to f s

max ≤ n/3 server failures (see [6]). The actual number of failures
is denoted as f s ≤ f s

max for servers and f ≤ fmax where fmax ≤ N−1 for clients.
Resource Model. Threads can access serially reusable non-CPU resources lo-

cated at their nodes during their execution. We consider the single resource model
— i.e., a thread cannot have more than one outstanding request at any given in-
stance of time. Resources are shared under mutual exclusion constrains and a thread
explicitly releases all granted resources before termination. Threads are assumed
to access their resources in arbitrary order — i.e., which resources are needed by
which threads is not known a priori. Consequently we employ deadlock detection
and resolution methods instead of prevention and avoidance techniques.

Resource request/release pairs are assumed to be confined within one node, how-
ever it is possible for a thread to lock a resource on a node and then make a remote

174 Sherif Fahmy, Binoy Ravindran, and E. D. Jensen

invocation to another node carrying the lock with it. Such a lock is released when
the thread’s head returns back to the node on which the resource was acquired.

Scheduling Objectives. Our primary objective is to design a thread scheduling
algorithm to maximize the total utility accrued by all threads as much as possible in
the presence of dependencies. Further, the algorithm must provide assurances on the
satisfaction of thread termination times in the presence of (up to fmax) crash failures.
Moreover, the algorithm must bound the time threads remain in a deadlock.

3 Algorithm Rationale

In [6], we develop QBUA, a scheduling algorithm for real-time threads in partially
synchronous systems. Here, we extend QBUA to handle resource dependencies and
precedence constraints, we call the resulting algorithm DQBUA. As in [4], prece-
dence constraints can be programmed as resource dependencies and are handled
the same way. When a node detects a distributed scheduling event (the failure of a
node, the arrival of a new thread or a resource request) it contacts a quorum system
requesting permission to run an instance of DQBUA. Once permission is granted, it
broadcasts a message to all other nodes requesting their scheduling information.
When the requesting node receives this information, it computes a system-wide
schedule, which we call a System Wide Executable Thread Set (or SWETS), and
multicasts any updates to nodes whose schedule has been affected.

The purpose of the quorum system is to arbitrate among nodes that detect a dis-
tributed scheduling event concurrently. This arbitration reduces thrashing by mini-
mizing the number of instances of DQBUA that are started to handle the same or
concurrent scheduling events. Due to space limitations, we do not reproduce the
details of the quorum arbitration algorithm, see [6] for details.

While computing a system-wide schedule, threads are ordered in non-increasing
order of their global Potential Utility Density (PUD) (which we define as the ratio
of a thread’s utility to its remaining execution time), the threads are then considered
for scheduling in that order. Favoring high global PUD threads allows us to select
threads for scheduling that result in the most increase in system utility for the least
effort. This heuristic attempts to maximize total accrued utility [4].

DBQUA handles both distributed and local deadlock using a deadlock detection
and resolution protocol that ensures that deadlocks are resolved in a timely manner
and that the loss in accrued system utility is minimized when deadlocks are resolved.

4 Algorithm Description

Once the arbitration phase of the algorithm is complete and a node has been granted
permission to run an instance of DQBUA, that node sends a message to all other
nodes requesting their scheduling information. The node then waits for 2T time

Scheduling Dependent Distributable Real-Time Threads 175

units to receive replies and then invokes Algorithm 3 to construct a system wide
schedule using the collected information. Algorithm 3 performs two basic functions,
first, it computes a system wide order on threads by computing their global PUD. It
then attempts to insert the remaining sections of each thread, in non-increasing order
of global PUD, into the schedule. After the insertion of each thread, the schedule is
checked for feasibility. If it is not feasible, then the thread is removed from SWETS
(after scheduling the appropriate exception handlers if necessary).

We define the global PUD of a thread as the ratio of the utility of the thread to
the total remaining executing time of its sections (see [7] for details). Therefore,
global PUD is a measure of the “return on investment” of that thread, [4] shows that
considering threads in non-decreasing order of PUD maximizes accrued utility.

In the absence of dependencies, the global PUD of a thread represents the utility
that would be accrued if a thread where to execute immediately. However, in the
presence of dependencies, the utility of a thread can only be accrued if all threads it
depends on are scheduled first. Thus, when a section requests a resource, we com-
pute its dependency chain by following the chain of resource requests and owner-
ship. Since a resource request is a distributed scheduling event, the node that gets
permission to run an instance of DQBUA (after arbitration by the quorum system)
will be sent all the information necessary for it to compute the dependency chain.

Once the dependency chain has been computed, we compute the PUD of the
current thread by using a least effort heuristic —i.e., while examining the threads in
the dependency chain to compute PUD, if it is faster to abort them than to continue
execution, then the threads are aborted and vice versa. Thus we compute the PUD
of a thread if it is executed as soon as possible. A similar heuristic is used in [4].
Note that this heuristic minimizes the amount of time a high utility thread waits for
a resource, at the expense of having to possibly re-execute threads that have been
aborted (see [4] for details).

Algorithm 1: computePUD

Input: Ti, Dep(i,k), j; // j: where request occured1:
Ut ← 0; Time← 0; Seen← /0;2:
for each Dep(i,k) do3:

for each S ∈ Dep(i,k) do4:
if S.ID /∈ Seen then5:

Seen← Seen∪S.ID;6:
//Γ1: sections S till last visit to j7:
S.Rem← Σk∈Γ1 RES.ID

k ;8:
//Γ2: all downstream sections9:
S.Abort ← Σk∈Γ2 Sh

k .ex;10:
if S.Abort > S.Rem then11:

Time← Time+S.Rem;12:
Ut ←Ut +UT (tcurr +S.Rem)13:

else Time← Time+S.Abort;14:

Time← Time+GEi; Ut ←Ut +Ui(tcurr +GEi);15:
Ti.PUD = Util/Time; return Ti.PUD;16:

Algorithm 2: isFeasible

Input: σi; //Schedule for each node1:
for 1≤ i≤ N do2:

posi ← 1;3:

Until (posi = length(σi) , 1≤ i≤ N) do4:
for 1≤ i≤ N do5:

Si ← getElement(σi, posi);6:
pre← getElement(σi, posi−1);7:
if posi = 1 then pre.Fin← 0;8:
if i = 1 then Si−1.Fin← Si.Arr; T ← 0;9:
Start ←max(pre.Fin,Si−1.Fin+T);10:
if Start 6= ∞ then11:

Si.Fin← Si.ex+Start;12:
if Si.Fin > Si.tt then13:

return f alse;14:

posi ← posi +1;15:

return true;16:

We now turn our attention to the method used to check schedule feasibility. For a
schedule to be feasible, all the sections it contains should complete their execution
before their assigned termination time. Since we are considering threads with end-
to-end termination times, the termination time of each section needs to be derived

176 Sherif Fahmy, Binoy Ravindran, and E. D. Jensen

from its thread’s end-to-end termination time. This derivation should ensure that if
all the section termination times are met, then the end-to-end termination time of the
thread will also be met. For the last section in a thread, we derive its termination time
as the termination time of the entire thread. The termination time of other sections
is the latest start time of the section’s successor minus the communication delay.

Similarly, we drive the termination times of exception handlers as the sum of their
start time and their execution time. However, we perform the decomposition back-
wards starting with the termination time of the last handler which is computed as
the termination time of that handler’s section plus the execution time of the handler.
The termination time of other handlers is the latest termination time of the handler’s
successor plus the communication delay plus the handler’s execution time. This en-
sures that handler termination times are arranged in LIFO order. See [7] for more
details. Using these derived termination times, we can check a schedule’s feasibility.

Algorithm 3: ConstructSchedule

input: Γ ; //Set of threads in the system1:
input: σ p

j , H j ← nil; //σ p
j : Previous schedule of node j, H j : set of handlers scheduled2:

for each Ti ∈ Γ do3:
if for some section Si

j ∈ Ti, tcurr +Si
j .ex > Si

j .tt then Ti.PUD← 0;4:
else5:

Compute Dep(i, j), resolving deadlock if necessary;6:
Ti.PUD← ComputePUD(Ti,Dep(i, j));7:

for each task el ∈ σ p
j do8:

if el is an exception handler for section Si
j then Insert(el, H j , el.tt);9:

σ j ← H j ;10:
σtemp ← sortByPUD(Γ);11:
for each Ti ∈ σtemp do12:

Ti.stop←false;13:
if do not receive σ j from node hosting Si

j ∈ Ti then Ti.stop←true;14:
if Ti.PUD > 0 and Ti.stop 6=true then insertByEDF(Ti,Dep(i, j));15:

for each j ∈ N do16:
if σ j 6= σ p

j then Mark node j as being affected;17:

Algorithm 2 shows how this is done in DQBUA. If the estimated completion
time, Si.Fin, of a section is greater than its derived termination, Si.tt, then the sched-
ule is not feasible (lines 13-14). We compute Si.Fin as the sum of the start time of
a section and its execution time. However, it is important to note that, except for
current and previous head nodes, these sections haven’t arrived in the system when
Algorithm 2 is invoked. Therefore we need to estimate the start time of these sec-
tions when computing their estimated completion time.

We estimate the start time of a section to be the maximum of the estimated com-
pletion time of the section preceding it in the local queue (line 10) and the arrival
time of the section on a node (which we estimate as the sum of the completion time
of the section’s predecessor and the communication delay, Si−1.Fin + T). We as-
sume that each section’s estimated completion time, Si.Fin, is set to infinity before
algorithm Algorithm 2 is run.

We use this relatively expensive method for checking the feasibility of schedules
since alternative methods can be misleading. The expedient method, used in some
previous work, of using a section’s latest start time (computed as its predecessor’s
latest termination time plus a communication delay, Si−1.tt + T) as an estimate for

Scheduling Dependent Distributable Real-Time Threads 177

its start time means that the section will have no slack. Thus, the section cannot
tolerate any interference by other sections. This leads to pessimistic results with
some threads being rejected from an underloaded system. Algorithm 2 handles this
by computing a better estimate of section start times, albeit at a higher cost.

In Algorithm 3, each node, j, sends the node running DQBUA its current local
schedule σ p

j . Using these schedules, the set of threads in the system, Γ , is derived.
In lines 3-8, DQBUA computes the global PUD of each thread in Γ . If a section
belonging to a thread cannot meet its termination time if it were scheduled imme-
diately, the thread is assigned a PUD of zero since it cannot possibly accrue any
utility to the system (line 4). Otherwise, we compute the dependency chain for the
thread’s sections and call Algorithm 1 to compute its global PUD (lines 6-7). In line
6, we check for cycles to detect any deadlock that may exist. If a cycle is found, it is
broken by aborting the thread with the least PUD by executing its exception handler.

Algorithm 4: insertByEDF

input: σ p
j , σ j ;1:

σ tmp
j ← σ j ; // make a copy of the schedule2:

for each remaining section, Si
j , belonging to Ti do3:

if Si
j /∈ σ tmp

j then4:
Insert(Si

j ,σ
tmp
j ,Si

j .tt); T Tcur ← Si
j .tt;5:

if Sh
j /∈ σ p

j then Insert(Sh
j ,σ

tmp
j ,Sh

j .tt);6:
for ∀Sk

n ∈ Dep(i, j) do7:
if Sk

n ∈ σ tmp
n then8:

if Sk
n is an abortion handler then Remove all sections belonging to Sk

n’s thread;9:
T T ← lookUp(Sk

n,σ
tmp
n);10:

if T T < T Tcur then T Tcur ← T T ; Continue;11:
else12:

Remove(Sk
n,σ

tmp
n ,T T); Insert(Sk

n,σ
tmp
n ,T Tcur); δ ←T T −T Tcur ;13:

for all predecessors, Sx
l , of Sk

n do14:
//If Sk

n is an abortion handler, Sx
l s are also abortion handlers.15:

//Otherwise, Sx
l s are normal sections16:

T T ← lookUp(Sx
l ,σ

tmp
l); γ ← δ ;17:

if Sk
n.tt−T T < δ then γ ← δ − (Sk

n.tt−T T) ;18:
Remove(Sx

l ,σ
tmp
l ,T T); Insert(Sx

l ,σ
tmp
l ,T T − γ);19:

else20:
T Tcur ←min(T Tcur ,Sk

n.tt); Insert(Sk
n,σ

tmp
n ,T Tcur);21:

if Sk
n is not an abortion handler and Sh

n /∈ σ p
n then Insert(Sh

n ,σ tmp
n ,Sh

n.tt);22:

if isFeasible(σ tmp
j ’s)=true then σ j ← σ tmp

j for all j ;23:
return σ j for all j;24:

It is necessary to ensure that the exception handlers of any thread that has been
accepted into the system can meet their termination time to ensure that the system
is restored to a safe state if the thread fails. This is done by inserting the handlers
of sections that were part of each node’s previous schedule into that node’s current
schedule (lines 8-9). Since these handlers were part of σ p

j , and DQBUA maintains
the feasibility of a schedule as an algorithm invariant, these handlers will meet their
termination times. In line 11, we sort the threads in non-increasing order of PUD
and consider them for scheduling in that order (lines 12-15). In line 14 we mark as
failed any thread that has a section hosted on a node that does not participate in the
algorithm. If a thread can contribute non-zero utility to the system and has not been

178 Sherif Fahmy, Binoy Ravindran, and E. D. Jensen

rejected from the system, then we insert its sections, and their dependencies, into
the scheduling queue of the nodes responsible for them in non-decreasing order of
termination time by calling Algorithm 4 (lines 15).

When Algorithm 4 is invoked, a copy is made of the current schedule so that any
changes that result in an infeasible schedule can be undone (line 2). For each of the
sections of the current thread, if the section does not already belong to the current
schedule (because it was part of the dependency chain of a previous thread), the
section and its handler are tentatively inserted into the schedule (lines 5-6).

We then consider the dependencies of that section (lines 7-20). Although sec-
tions are considered for scheduling in non-increasing order of global PUD, they are
inserted into the schedule in non-decreasing termination time order. Thus during
underloads, when no threads are rejected, the resulting schedule is a deadline or-
dered list. So during underloads, DQBUA defaults to Earliest Deadline First (EDF)
scheduling, which is an optimal realtime scheduling algorithm [10] that accrues
100% utility during underloads. Note that if a section, Sk

n, in the dependency chain,
Dep(i, j), needs to be aborted in order to reduce the blocking time of a thread, then
all the sections belonging to Sk

n’s thread need to be aborted as well (line 9).
To ensure that the order of the dependencies is maintained, if the termination time

of a section is greater than the termination time of a section that depends on it, its
termination time is moved up to the termination time of the section that depends on
it (line 13). In addition, all its predecessors have their termination time adjusted to
reflect this new value (lines 14-19). Finally, the feasibility of the tentative schedule
is checked (line 23) and the changes are made permanent if the schedule is feasible.

5 Algorithm Properties

We establish several properties of DQBUA. Due to space limitations, some of the
properties and all of the proofs are omitted here, and can be found in [7]. Below, T is
the communication delay, Γ is the set of threads in the system and k is the maximum
number of sections in a thread.

Theorem 1 A distributed scheduling event is handled at most O(|Γ |2k3 log(|Γ |k)+
T) time units after it occurs, with high, computable, probability, Phand .

Theorem 2 If all nodes are underloaded, no nodes fail (i.e. f = 0) and each thread
can be delayed O(|Γ |2k3 log(|Γ |k) + T) time units once and still be schedulable,
DQBUA meets all the thread termination times yielding optimal total utility with
high, computable, probability, Palg.

Theorem 3 If N− f nodes do not crash, are underloaded, and all incoming threads
can be delayed O(|Γ |2k3 log(|Γ |k) + T) and still be schedulable, then DQBUA
meets the termination time of all threads in its eligible execution thread set, Γ , with
high computable probability, Palg.

Scheduling Dependent Distributable Real-Time Threads 179

Theorem 4 A deadlock is resolved in at most O(|Γ |2k3 log(|Γ |k)+T) time units by
terminating the thread that can contribute the least amount of utility to the system.

Theorem 5 Resource contention is resolved in order of thread PUD.

Theorem 6 DQBUA limits thrashing by reducing the number of instances of DQBUA
spawned by concurrent distributed scheduling events.

6 Experimental Results

We performed a series of simulation experiments on ns-2 to compare the per-
formance of DQBUA to RTG-DS in terms of Accrued Utility Ratio (AUR) and
Deadline Satisfaction Ratio (DSR). We define AUR as the ratio of the accrued util-
ity (the sum of Ui for all completed threads) to the utility available (the sum of Ui
for all available jobs) and DSR as the ratio of the number of threads that meet their
termination time to the total number of threads. We considered threads with three
segments. Each thread starts at its origin node with its first segment. The second
segment is a result of a remote invocation to some node in the system, and the third
segment occurs when the thread returns to its origin node to complete its execution.

Fig. 1 AUR vs. Utilization Fig. 2 DSR vs. Utilization

The periods of the threads are fixed, and we vary their execution times to ob-
tain a range of utilization from 0 to 200%. For fair comparison, all algorithms were
simulated using a synchronous system model, where communication delay varied
according to an exponential distribution with mean and standard deviation 0.02 sec-
onds and an upper bound of 0.5 seconds. Our system consisted of fifty client nodes
and five servers. System utilization is considered the maximum utilization experi-
enced by any node. We assume that there are two, different, resources on each node.
A section randomly chooses which resource, if any, it wishes to acquire and the time
spent holding a resource is a uniformly distributed random number that represents a
proportion of that section’s remaining execution time. See [7] for more details.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

A
U

R

Utilization

AUR vs Utilization

DQBUA
RTG-DS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

D
S

R

Utilization

DSR vs Utilization

DQBUA
RTG-DS

180 Sherif Fahmy, Binoy Ravindran, and E. D. Jensen

As can be seen in Figures 1 and 2, the performance of DQBUA is better than that
of DTG-DS during overloads. This occurs because DQBUA performs collabora-
tive scheduling thus maximizing, as much as possible, system-wide accrued utility.
RTG-DS does not perform collaborative scheduling and therefore performs worse
during overloads. However, during underloads, RTG-DS outperforms DQBUA as
the utilization of the system approaches one, since DQBUA has higher overhead.

7 Conclusion and Future Work

We presented an algorithm, DQBUA, for scheduling dependent distributable threads
in a partially synchronous system. We showed that it accrues optimal utility dur-
ing underloads and attempts to maximize the accrued utility during overloads. We
experimentally compared DQBUA to another scheduling algorithm for dependent
threads, RTG-DS, and showed that DQBUA outperforms RTG-DS during overloads.
However, during underloads, RTG-DS has better performance since it has lower
overhead. Future work includes considering more dynamic networks such as mo-
bile ad hoc networks and finding more sophisticated methods for breaking a wait-for
graph when distributed deadlock is detected.

References

1. Cares, J.R.: Distributed Networked Operations: The Foundations of Network Centric Warfare.
iUniverse, Inc. (2006)

2. Chen, W., Toueg, S., Aguilera, M.K.: On the quality of service of failure detectors. IEEE
Transactions on Computers 51(1), 13–32 (2002)

3. Clark, R., Jensen, E., Reynolds, F.: An architectural overview of the alpha real-time distributed
kernel. In: 1993 Winter USENIX Conf., pp. 127–146 (1993)

4. Clark, R.K.: Scheduling dependent real-time activities. Ph.D. thesis, CMU (1990). CMU-CS-
90-155

5. Druschel, P., Rowstron, A.: PAST: A large-scale, persistent peer-to-peer storage utility. In:
HOTOS ’01, pp. 75–80 (2001)

6. Fahmy, S.F., Ravindran, B., Jensen, E.D.: Fast scheduling of distributable real-time threads
with assured end-to-end timeliness. Tech. rep., Virginia Tech, ECE Dept. (2007). Available
at: http://www.real-time.ece.vt.edu/RST_TR.pdf

7. Fahmy, S.F., Ravindran, B., Jensen, E.D.: Scheduling dependent distributable real-time threads
in dynamic networked embedded systems (2007). Available at: http://filebox.vt.
edu/users/fahmy/TR-DIPES.pdf

8. Han, K., Ravindran, B., Jensen, E.D.: Exploiting slack for scheduling dependent, distributable
real-time threads in mobile ad hoc networks. In: RTNS 2007, pp. 225–234 (2007)

9. Jensen, E., Locke, C., Tokuda, H.: A time driven scheduling model for real-time operating
systems (1985). IEEE RTSS, pages 112–122, 1985.

10. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM 20(1), 46–61 (1973)

11. Sterzbach, B.: GPS-based clock synchronization in a mobile, distributed real-time system.
Real-Time Syst. 12(1), 63–75 (1997)

An Efficient Time Annotation Technique in
Abstract RTOS Simulations for Multiprocessor
Task Migration

Henning Zabel and Wolfgang Müller

Abstract Complex control oriented embedded systems with hard real-time con-
straints require real-time operation system (RTOS) for predictable timing behavior.
To support the evaluation of different scheduling strategies and task priorities, we
use an abstract RTOS model based on SystemC. In this article, we present an anno-
tation method for time estimation that supports flexible simulation and validation of
real-time-constraints for task migration between different target processors without
loss of simulation performance and less memory overhead.

1 Introduction

Complex control oriented embedded systems with hard real-time constraints require
real-time operation system (RTOS) for predictable timing behavior [1]. Different
scheduling strategies are applied and evaluated to guarantee deadlines for a given
task set. If accurate execution times for tasks are known, a schedulability analysis
can validate if the selected trategy leads to feasible schedules for a given task set.

Interrupts complicate the predictability of deadlines as they do not rely on the
RTOS scheduling decisions. Accurate timing analysis in consideration of interrupts
are currently executed by means of instruction set simulators (ISS), which imple-
ment a complete model of the target processor including I/Os, interrupts, pipelines
and memories. The use of ISS requires the embedded software to be fully imple-
mented and is therefore only applicable in late development phases. Schedulability
tests and response time analysis helps to evaluate different scheduling strategies
and task priorities in early design phases. For this, timing information for execution
times of atomic blocks of a task has to be available. Those timing information can
be achieved by worst case execution time analysis (WCET) or empirical studies.

Henning Zabel · Wolfgang Müller
University Paderborn, e-mail: henning, wolfgang@c-lab.de

Please use the following format when citing this chapter:

Zabel, H. and Müller, W., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded
Systems: Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 181–190.

182 Henning Zabel and Wolfgang Müller

In combination with an abstract RTOS model library, SystemC allows functional
simulations of task scheduling with timing. This approach has proven to be adequate
for early HW/SW co-design decisions and delivers good approximations for timing
analysis with small errors compared to complex instruction set simulations and gives
a simulation speedup up to 1000x [2].

In our approach, we simulate a given task set based on our abstract SystemC
RTOS model. For schedulability and interrupt analysis, tasks are divided into atomic
blocks and each block is annotated by its execution time on a specific target proces-
sor. To validate real-time constraints for task migration in multi processor environ-
ments, the annotated execution times have to be flexibly adapted to the target pro-
cessor for each migration. For analysis of the execution time and implementation
of the annotation it has some advantages to annotate the start and not the end of an
atomic block, which is explained later. Thus, the execution time of an atomic block
is simulated at the beginning of the next atomic block. Typically, a block can have
different predecessors and thus the previous simulated block must be identified to
simulate the correct execution time. This can be realized by:
(i) hard-coded switch-statements, which are very efficient but do not support task
migration and flexible adaptation and
(ii) a look-up table, where the column index identifies the previous atomic block and
the row the actual atomic block. These tables are of quadratic size in the number of
atomic blocks.
Our approach uses processor-specific look-up tables to store execution times. For
each target processor one look-up table, which is of linear size in the number of
atomic blocks, is generated. Task migration can be simply performed by the ex-
change of tables. We compare our approach with the two above mentioned solu-
tions for time annotation. Our evaluation shows, that our approach compares to the
fast simulation of alternative solutions but due to the linear table size our tables
support more complex applications and are easily applicable to different processor
platforms.

The paper is structured as follows. Section 2 gives an overview about existing
RTOS models. In Section 3 we present our main approach, which is evaluated in
Section 4. The article closes with a conclusion in Section 5.

2 Related Work

Today, the functional analysis of embedded SW is mostly executed on an Instruc-
tion Set Simulator (ISS). ISS simulations can give accurate timing analysis for a
specific target processor if the software code is already available. However, such
simulations are considerably slow and thus can have only limited use for early de-
sign stages. Early design steps typically apply a static Worst case Execution Time
(WCET) analysis [3]. WCET analysis takes the static program in higher-level pro-
gramming language or machine code and typically extracts graph representations,
e.g., control and/or data flow graphs, for worst case runtime estimation computation.

Efficient Time Annotation Technique in Abstract RTOS Simulations 183

For this approach we use a representation similar to T-Graphs [7] as input. Cur-
rently available professional WCET tools for static analysis like aiT (AbsInt) and
SymTA/S (SymtaVision) support static WCET execution and response time analy-
sis. Advanced processor behavior like pipelining, caching, and branch prediction are
considered. ISS based simulation is usually very accurate since it executes the real
SW on a virtual platform. However, it also comes with a very slow execution (i.e.,
0,5-500MHz) so that no detailed evaluations and analysis like the evaluation of dif-
ferent scheduling strategies can be efficiently performed. Due to this drawback sev-
eral research groups have developed abstract canonical RTOS models implemented
in SpecC and SystemC give simulation speeds 500-1000 faster than the comparable
ISS execution [2, 5, 4, 6]. Whereas those models lacked precision in the beginning,
most recent reports indicate an accurate simulation and a well coverage of task and
interrupt scheduling behavior with a fast simulation speed at the same time.

Gerstlauer et al. present a methodology based on SpecC/C in [2] for transac-
tion level based refinement. They introduce a canonical abstract RTOS model for
scheduling analysis of tasks which covers basic operations for process state transi-
tions, context switching, and semaphores. Tasks are annotated by additional control
statements. Synchronization between the scheduler and tasks and between tasks is
realized by events. Their approach covers task and interrupt scheduling.

Huss and Klaus present a similar RTOS model in SystemC [5]. They introduce
a scheduler class with basic RTOS functions where individual schedulers can be
inherited from. Their model covers task scheduling but lacks interrupt management.

Posadas et al. [6] considers tasks divided into different basic blocks. A sepa-
rate time manager monitors interrupts and segment execution times where non-
predictable and predictable (i.e., timer and timeouts) are distinguished. The sim-
ulation is based on a implementation of the POSIX API in SystemC. They report an
8% worst case deviation with respect to ISS. This work estimates execution times
during simulation by replacing C++ operators, which comes at costs of longer sim-
ulation times.

We have developed a canonical SystemC library based on the concepts of [2] for
simulation at PV-T (programmers view with timing) transaction level which also
overcomes the drawback of non-preemptive tasks for accurate interrupt management
including nested and prioritized interrupts. In contrast to other works, our approach
comes with separated management for tasks and interrupts to support the analysis
of different interrupt and task scheduling strategies.

All those approaches are based on the insertion of timing estimation information
of the target platform. Timing information, which defines the consumed CPU time
of a particular SW block, is typically directly inserted into the SW code by back
annotation. In this article, we present an approach to include timing information into
SystemC by means of a table. Thus, we can easily exchange the timing information
without the need of recompilation of the complete model. We introduce an approach
with lookup tables of size 2*n where n is the number of annotated atomic blocks.
Our experimental results demonstrate that our lookup tables are a flexible approach
and have no impact on the simulation time.

184 Henning Zabel and Wolfgang Müller

3 Automated Runtime Estimation

RTOS analysis focuses on the time points when a specific basic block is executed.
This supports tracing of simulation results with respect to their execution time. Es-
pecially for timing analysis in combination with interrupts, this is of great help. For
analysis of execution times, the code is separated into atomic blocks and annotated
by its execution time. By means of our SystemC RTOS model we can simulate tasks
and allocate them to different virtual CPUs to analyze their timing behavior. To de-
fine these blocks the designer marks individual locations in the source code. The
automated runtime estimation is then performed in two phases: (1) the execution
time from one mark to the next mark is evaluated by disassembling the firmware
for target processor and (2) the source code is back-annotated by extending marks
with time labels of the estimated times. This code can be compiled for simulation
on common PC which allows a runtime estimation of the software with high per-
formance. We present an annotation technique based on a small sized table with for
fast simulation. The possibility to exchange those tables during runtime supports the
efficient simulation of task migration.

3.1 Code Estimation

For dividing the source code of functions into atomic blocks, the designer marks
specific points in the source code by, e.g., special C-macros like Mark CC(). To
keep changes to the source code as small as possible we use assembler labels to
mark specific points in the source. Therefore C-macros are mapped to assembler
labels for cost estimation. Labels are used to mark entry points followed by some
lines of code.

short rc = 0;
if (a > b)
{
rc = b;
if (a > 0)
{

rc = -b;
MARK_CC(A);

}
MARK_CC(B);

}
MARK_CC(end)

short rc = 0;
if (a > b)
{

MARK_CC(B);
rc = b;
if (a > 0)
{

MARK_CC(A);
rc = -b;

}
}
MARK_CC(end);

Fig. 1 Different Annotations: end of an if-statements is marked with a label (left) and beginning
of each if-statement is marked with a label (right)

There are two possibilities to mark blocks by labels, like depicted Figure 1:

(1)the end of a block is marked. Because the marks are replaced by back annotations
later on, this location refers to the annotation of a atomic block after its execution.

Efficient Time Annotation Technique in Abstract RTOS Simulations 185

(2)the beginning of each branch of a conditional control flow is marked. Therefore
the end of a block is implicit defined at the start of the next one. Here the previous
mark has to be considered to annotate an execution time.

In the first approach, it is most likely that the optimization made by the compiler
will remove label ”A”, because the entry-point of ”A” and ”B” are the same. This
eliminates the separation between the two if-statements so that the mark becomes
useless for timing estimation. As the second approach does not have this problem,
we apply marking at the beginning of branches.

To give an example, we evaluate the cost estimation for the Atmel AT90CAN128
RISC processor. The CPU uses a 2 stage pipeline with no cache. The above men-
tioned marks have to be added into each function of the program. If the source code
is not available, the estimation tool can also follow calls to subroutines. However,
subroutines must have no loops. When the function has conditional branches with
different exertion times, the estimated costs can be inaccurate. For estimation the la-
bels of marks are mapped to assembler labels like shown in Figure 2 by the example
of the Euclidean algorithm.

short euklid (short a,short b)
{
MARK_CC(euklid_start);
while (b != 0){

MARK_CC(euklid_loop);
short h = mod (a,b);
a = b;
b = h;

}
MARK_CC(euklid_end);
return a;

}

000000e2 <euklid>:
e2: cf 93 push r28
e4: df 93 push r29
e6: 9c 01 movw r18, r24
e8: eb 01 movw r28, r22

000000ea <euklid_start>:
ea: 67 2b or r22, r23
ec: 11 f4 brne .+4 ; 0xf2
ee: 09 c0 rjmp

.+18 ; 0x102
f0: ec 01 movw r28, r24

000000f2 <euklid_loop>:
f2: be 01 movw r22, r28
f4: c9 01 movw r24, r18
f6: 0e 94 51 00 call 0xa2 <mod>
fa: 9e 01 movw r18, r28
fc: 00 97 sbiw r24, 0x00 ; 0
fe: c1 f7 brne .-16 ; 0xf0

100: 9e 01 movw r18, r28

00000102 <euklid_end>:
102: c9 01 movw r24, r18
104: df 91 pop r29
106: cf 91 pop r28
108: 08 95 ret

Fig. 2 Euclidean algorithm in C and the corresponding assembler for the Atmel AT90CAN128
processor

The compiler links these labels to unique addresses in program memory space.
Thereafter, an estimation tool can generate a time graph G = (V,E) from those ad-
dresses. Each address defines a node N ∈ V in the graph and an edge e ∈ E de-
notes the costs, i.e., estimated execution times. For the Euclidean example nodes are
N0=”euklid”, N1=”euklid start” (start), N2=”euklid loop” (loop), N3=”euklid end”
(end) and N4=”ret” where the latter is given by the return-instruction. We can now

186 Henning Zabel and Wolfgang Müller

compute the cost Ci, j from node Ni to Nj by disassembling the firmware and eval-
uating all possible execution paths through the control flow by depth-first search
(DFS). The DFS assigns values for each pair of Ni,Nj ∈ {1, ..,#N} and to the return-
instruction. The DFS terminates when a label in N \{Nj} is reached. The case i = j
is important for loop estimation. If at least one direct path from Ni to Nj is detected
an edge is added to the graph with the estimated worst case execution time. For the
above example, this estimation leads to a graph like it is shown in Figure 3.

Fig. 3 Annotation Graph: Nodes are identified by annotated marks and edges denote costs given
in numbers of CPU cycles.

When there is more than one path between two nodes in the assembler, costs can
be an interval and the annotation is only an upper bound.

3.2 Back-annotation

For simulation the marks in the source code are replaced by function calls to sim-
ulate the execution time of the previous block. The time consumption is simulated
by means of the SystemC. For annotating node Ni all edges leading to Ni must be
onsidered. The fastest and most obvious way doing this, is to implement the graph
by a C++ switch-statement, which store the successor-predecessor relationships of
nodes by their index. Alternatively, a look-up table of size (#N)2 can be used to
store the cost of ei, j. Our approach uses a table presentation with a direct access
through the node index and a reduced table size of 2 ·#N. The key idea in our table
representation is to assign relative input costs CIN

i and static output costs of COUT
i

to each node Ni like depicted in Figure 4.
When leaving mark Ni a variable cc cost is initialized with output cost COUT

i
and when reaching mark Nj the relative cost CIN

j is added to cc cost and con-

sumed by a function call. Additionally, it has to be ensured, that COUT
i +CIN

j is
exactly the cost Ci, j of the edge from Ni to Nj. Figure 4 gives a possible solu-

Efficient Time Annotation Technique in Abstract RTOS Simulations 187

Fig. 4 general graph with divided input and output costs (left), timing graph for the Euclidean
algorithm example with nodes N1-N3

tion for N1-N3 of the Euclidean example. The equations COUT
i +CIN

j = Ci, j forms
a system of linear equations and can be solved by the Gauss algorithm as fol-
lows. Let A ∈ M(#E,2 ∗ #N,N) be a matrix (#N number of nodes and #E num-
ber of edges in the time graph) and b ∈ N #E a vector with ∀el = (Ni,Nj) ∈ E, l ∈
{1..#E} : Al,2∗i+1 = 1,Al,2∗ j = 1,bl = cost from Ni to Nj . Then solving Ax = b with
x = (CIN

1 ,COUT
1 , ..,CIN

#N ,COUT
#N) ∈ N #N delivers the wanted values for the in- and

out-cost, if and only if Ax = b is solvable. Since we only need one solution it is not
important if this solution is unique or not. If the linear equations are unsolvable, this
annotation technique is not applicable at the moment.

The result x is finally stored in an integer-array with exactly 2 ·#N elements. The
relative incoming cost CIN

i of Ni is stored at index 2 · i and the static outgoing cost
is stored at index 2 · i + 1. Therefore the table look-up can be implemented easily
without complex access function to retrieve the corresponding costs for node Ni.

4 Evaluation

We evaluated our approach by four examples for the Atmel AT90CAN128 proces-
sor. The examples are at first simulated with the AVR-Studio 4.12 from ATMEL to
get reference values tre f for the execution times in CPU cycles. Thereafter, we ana-
lyzed the binaries with our execution time estimation tool and annotated the source
code as mentioned above with a table with the solutions of our linear equations,
namely ”table 2N” next. We finally compared simulation speed of ”table 2N” with
hard-coded switch-statements and the table with (#N)2 entries and direct access,
i.e., ”table N2”.

Our estimation tool generates header files for each annotation, which redefines
the previous introduced marks. Thus, the annotation can be performed without
changing the original source code. The annotated code is compiled on a standard
PC (with Core2 Duo 6600) and simulated to achieve the required cycles tsim and the

188 Henning Zabel and Wolfgang Müller

simulation speed. The following condition should be true: |tre f − tsim| < ε with a
very small ε . In our example, ε was always zero.

Our benchmarks implemented the following examples:

primf implements a factorization of 4 byte unsigned integer into its primal fac-
tors. To avoid the addition of optimized assembler code for 32bit integer opera-
tion to the firmware by avr-compiler, we use our own implementations to evaluate
the quotient and remainder.

sort implements an array sorting with recursion and nested loops. The array is
sorted by quick-sort and then a copy of this array is sorted by bubble sort. In the
end these arrays are compared in order to validate both results.

chk implements a small checksum check with bit-wise operations. The checksum
is combined by an evaluation of a linear function.

fib implements the computation of a Fibonacci number as a final example for
recursion.

All functions are invoked once for cost estimation and 106 times during sim-
ulation. Figure 5 shows the simulation results with not optimized code and Fig-
ure 6 with optimized code. The optimization corresponds to the compilation of the
firmware, for simulation the embedded software is always compiled with optimiza-
tion.

Cycles Switch Array N2 Array 2N
primf 310421(*) 33.5us 2692 32.17us 3608 34.4us 2916
sort 288130 19.78us 3243 20.01us 3259 22.4us 2991
chk 30007 12.54us 1898 14.77us 2220 12.5us 2068
fib 233815 30.56us 1474 27.56us 1598 32.3us 1566

(*) 308111 for Array 2N, since some edges are estimated via two pathes

Fig. 5 Evaluation results for non-optimized firmware (-O0)

Cycles Switch Array N2 Array 2N
primf 76682 33.46us 2676 31.45us 3452 32.6us 2740
sort 97888 21.11us 3243 19.42us 3259 22.5us 2991
chk 12655 12.43us 1896 14.78us 2168 12.2us 2060
fib 119373 30.55us 1474 31.54us 1598 32.2us 1566

Fig. 6 Evaluation results for optimized firmware (-O2)

The tables show the estimated cycles, measured execution times and the code
size of the simulation. The estimated cycles are almost the same for all solution
and match the reference values from the AVR-Studio. Only for primf the value for
the array 2N differs by about 0.7%. The execution times for the simulation remain
similar for the different annotations. This demonstrates that our approach can be ap-
plied without loss of performance. The smaller object size for Array 2N (compared

Efficient Time Annotation Technique in Abstract RTOS Simulations 189

to Array N2) are due to the smaller table size with our approach. This is mainly
due to the smaller data sections, which includes the tables. The advantage of the
table approach is that the implementation of the marks for simulation is indepen-
dent from the generation of the lookup-tables, means the accessed data. When using
switch statements, as mentioned above, implementation and annotation is one part.
Additionally, the table can be replaced during runtime to simulate a task migration
without the loose of performance.

We also measured the execution speed of the AVR-Studio with 220 thousand
instructions per second. Our backannotated simulation was executed with around
1−10 ·109 instructions per second, which finally is a speed-up of more than 4000x.
Here, simulation times for optimized and unoptimized code were almost the same,
because during simulation only the cost for the edges changes, but not the simu-
lated code (except some constant optimization made by the compiler). Because the
optimized code for the AT90CAN128 is considerably smaller than the unoptimized
one, that leads to significant differences in performance during an instruction set
simulation.

5 Conclusion

In this article, we present a method for time estimation and back-annotation based on
an abstract RTOS in SystemC. It supports the flexible simulation and validation of
real-time-constraints for task migration between different target processors without
loss of simulation performance and less memory overhead.

For our approach we use prepared source code as input, which contains marks
at the beginning of each branch. For timing estimation the marks are mapped to
assembler and we evaluate a timing graph, where the edges denote the cost from
one mark to another. We separate the cost of each edge as static output and relative
input cost for each node (mark) by solving a system of linear equations. The solution
is stored as an array of size 2 ·n, where n is the number of nodes (marks). Then, the
back-annotation can be efficiently implemented by table lookups, since the table-
indices are static at compile time.

We demonstrated our approach by four examples for the Atmel AT90CA128
processor. At first, our back-annotated simulations deliver the same cycle counts
like simulations with the AVR-Studio. At second, this annotation approach achieves
similar simulation performance in comparison to hard-coded switch statements and
uncompressed tables, but needs less space and allows easy simulation of task mi-
gration by replacing the tables.

190 Henning Zabel and Wolfgang Müller

Acknowledgments

The work described herein is partly funded by the DFG through the Sonder-
forschungsbereich 614, the German Ministry for Education and Research (BMBF)
through the ITEA2 project TIMMO (01IS07002), and by the EU through CO-
CONUT (FP7-ICT-3217069).

References

1. Giorgio C. Buttazzo and Giorgio Buttanzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers, Norwell, MA, USA,
1997.

2. A. Gerstlauer, H. Yu, and D. Gajski. Rtos modeling for system level design. In Proceedings of
Design, Automation and Test in Europe, March 2003., 2003.

3. Kopetz H. Real-Time Systems. Design Principles for Distributed Embedded Applications.
Springer Verlag, Dordrecht, Netherlands, 1997.

4. M. AbdElSalam Hassan, Keishi Sakanushi, Yoshinori Takeuchi, and Masaharu Imai. Rtk-spec
tron: A simulation model of an itron based rtos kernel in systemc. In DATE ’05: Proceedings
of the conference on Design, Automation and Test in Europe, pages 554–559, Washington, DC,
USA, 2005. IEEE Computer Society.

5. Sorin A. Huss and Stephan Klaus. Assessment of real-time operating systems characteristics
in embedded systems design b systemc models of rtos services. In DVCon 07: Design and
Verification Conference and Exhibitation, San Jose, CA, 2007.

6. Hector Posadas, Jesús Ádamez, Pablo Sánchez, Eugenio Villar, and Francisco Blasco. Posix
modeling in systemc. In ASP-DAC ’06: Proceedings of the 2006 conference on Asia South
Pacific design automation, pages 485–490, New York, NY, USA, 2006. ACM Press.

7. Peter P. Puschner and Anton V. Schedl. Computing maximum task execution times - a graph-
based approach. Real-Time Systems, 13(1):67–91, 1997.

Handling QoS Dependencies in Distributed
Cooperative Real-Time Systems

Luı́s Nogueira and Luı́s Miguel Pinho

Abstract Due to the growing complexity and adaptability requirements of real-time
embedded systems, which often exhibit unrestricted inter-dependencies among sup-
ported services and user-imposed quality constraints, it is increasingly difficult to
optimise the level of service of a dynamic task set within an useful and bounded
time. This is even more difficult when intending to benefit from the full potential
of an open distributed cooperating environment, where service characteristics are
not known beforehand. This paper proposes an iterative refinement approach for
a service’s QoS configuration taking into account services’ inter-dependencies and
quality constraints, and trading off the achieved solution’s quality for the cost of
computation. Extensive simulations demonstrate that the proposed anytime algo-
rithm is able to quickly find a good initial solution and effectively optimises the rate
at which the quality of the current solution improves as the algorithm is given more
time to run. The added benefits of the proposed approach clearly surpass its reduced
overhead.

1 Introduction

Most of today’s embedded systems are required to work in highly dynamic envi-
ronments, where the characteristics of the computational load cannot always be pre-
dicted in advance and resource needs are usually data dependent and vary over time
as tasks enter and leave the system [1]. Nevertheless, response to events still have to
be provided within precise timing constraints in order to guarantee a desired level
of performance.

One promising solution is to support cooperation among nodes of a distributed
system. A careful partitioning of the workload between a device and their remote

Luı́s Nogueira · Luı́s Miguel Pinho
IPP-Hurray Research Group, Polytechnic Institute of Porto
e-mail: luis, lpinho@dei.isep.ipp.pt

Please use the following format when citing this chapter:

Nogueira, L. and Pinho, L.M., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded
Systems: Design, Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 191–200.

192 Luı́s Nogueira and Luı́s Miguel Pinho

neighbours has been proved to achieve power and performance gains [2, 4]. Never-
theless, supporting the maximisation of each user’s quality of service (QoS) require-
ments in such a distributed service execution is a key issue [7]. This need imposes a
complexity that may prevent the possibility of computing an optimal QoS configu-
ration within an useful and bounded time. It is therefore beneficial to build systems
that can trade off the needed computation time for the quality of the achieved solu-
tion. In [9], an iterative refinement QoS optimisation that maximises the provided
QoS of a set of independent tasks was proposed. The configuration process can be
interrupted at any time and still provide a solution and a measure of its quality.

However, the problem is even more complex when tasks exhibit QoS dependency
relations among them. Such dependency relations specify that a task offers a certain
level of QoS under the condition that some specified QoS will be offered by the
environment or by other tasks. In this case, the negotiation process has to ensure
that a source task provides a QoS which is acceptable to all consumer tasks and lies
within the QoS range supported by the source task. This paper proposes an anytime
local QoS optimisation, assuming that services share resources and their execution
behaviour and input/output qualities are interdependent, i.e., a constraint on one
quality or resource parameter can constrain other system’s parameters. To guarantee
that a valid solution is available at any time, QoS dependencies are tracked and the
performed changes are propagated to all the affected attributes at each iteration of
the algorithm. To the best of our knowledge no other works propose an anytime
approach for a distributed QoS configuration of resource intensive services in open
real-time embedded services with the ability to handle tasks’ inter-dependencies and
maximise the satisfaction of each user’s quality preferences.

2 System model

With tasks joining and leaving the system at any time both resource demands and
availability can fluctuate rapidly and unpredictably. This may affect the ability to
individually execute services with specific user-imposed QoS constraints and drive
devices to group themselves in a coalition for a cooperative service execution [7].

A real-time service Si = {wi1,wi2, . . . ,win} is a collection of one or more work
units wi j that can be executed at varying levels of QoS to achieve an efficient re-
source usage that constantly adapts to the embedded devices’ specific constraints,
nature of executing tasks and dynamically changing system conditions. Each work
unit wi j = τi1,τi2, . . . ,τin is a set of one or more tasks τi j that must be executed in
the same node due to local dependencies. Dependencies are modelled as a directed
graph Gi j, with each graph node representing a task and the edges representing the
data flow between the tasks. Correct decisions on service partitioning are made at
run time when sufficient information about the workload and communication re-
quirements become available [12].

Given the heterogeneity of services to be executed, users’ preferences, underly-
ing operating systems, networks, devices, and the dynamics of their resource usages,

Handling QoS Dependencies in Distributed Cooperative Real-Time Systems 193

QoS specification becomes an important issue in the context of a distributed QoS-
aware cooperative service execution framework. Nodes must either have a common
understanding of how QoS should be specified, or be able to map their individual
specifications into a common one. A sufficiently expressive scheme for defining the
QoS dimensions subject to negotiation, their attributes and the quality constraints
in terms of possible values for each attribute, as well as inter-dependency relations
between some of those QoS parameters was proposed in [7] and can be expressed
in several QoS description languages [3]. This scheme is used to specify in the ser-
vice’s description, known at admission time, how a task’s output quality depends on
the quality of its inputs and on the amount of resources it uses to produce the output.
These inter-dependency relations among the QoS parameters of a particular service
Si can be present (i) among two or more QoS attributes of a single task τi; (ii) among
two or more tasks within a work unit wi j; or (iii) among two or more work units that
may be executed in the same or in different nodes.

Based on a domain’s QoS characterisation, users provide a single specification
of their own range of QoS preferences Qi for a complete service Si, without having
to understand the individual work units that make up the service. Preferences are
defined in a qualitative way, imposing a relative decreasing order of importance on
QoS dimensions, their attributes, and acceptable values. Given the spectrum of the
user’s acceptable QoS levels, each node formulates the best instantaneous service
level agreement (SLA) it can offer. The local QoS optimisation recomputes the set
of QoS levels for the new set of tasks, as it tries to find a feasible set of service
configurations that maximises users’ satisfaction with the provided service as well
as minimises the impact on the current QoS of the previously accepted tasks. At each
iteration, the search of a better solution is guided by a heuristic evaluation function
that optimises the rate at which the quality of the current solution improves overtime.
The time to find a feasible service solution is dynamically imposed as a result of
emerging environmental conditions [10]. A SLA also includes a stability period ∆t ,
guaranteeing that during a specific time interval the promised QoS will be assured
by the node’s local QoS optimisation. ∆t is dynamically determined in response
to fluctuations in the tasks’ traffic flow, relating observations of past and present
system’s conditions and extending users’ influence also to the services’ adaptation
during execution [8].

With several independently developed applications with different timing require-
ments coexisting in the same node, it is important to guarantee a predictable perfor-
mance under specified load and failure conditions, and ensure a graceful degradation
when those conditions are violated. This is strictly related to the capacity of control-
ling the incoming workload, preventing abrupt and unpredictable degradations and
achieving isolation among services, providing service guarantees to critical applica-
tions [10, 11].

194 Luı́s Nogueira and Luı́s Miguel Pinho

3 Optimising the QoS of a inter-dependent task set

The formation of a cooperative coalition should enable the selection of individual
nodes that, based on their own resources and availability, will constitute the group
that maximises the user’s QoS requirements Qi associated with service Si, expressed
in decreasing preference order. Each Qi

k j = {Qi
k j[0], . . . ,Qi

k j[n]} is a finite set of n
quality choices for the jth attribute of the kth QoS dimension associated with a work
unit wi j of the new service Si.

This paper extends the anytime local1 QoS optimisation introduced in [9] by
allowing tasks to exhibit unrestricted inter-dependencies among them, only know
at admission time. Service negotiation is based on a iteratively refinement of each
node’s local QoS level, maximising the provided QoS for the new service and min-
imising the quality degradation of previously accepted tasks. The proposed approach
ensures that a source task provides a QoS which is acceptable to all consumer tasks
and lies within the QoS range supported by the source task. Based on the new ser-
vice’s data flow graph Gi and on its set of inter-dependency relations Depsi, Al-
gorithm 1 tracks QoS dependencies and propagates the performed changes in one
attribute to all local affected attributes at each iteration. If, by following the chain of
dependencies, the algorithm finds a task that is already in its list of resolved depen-
dencies, a deadlock is detected and the service proposal formulation is aborted.

In order to be useful in practice, an anytime approach must try to quickly find a
sufficiently good initial proposal and gradually improve it if time permits, conduct-
ing the search for a better feasible solution in a way that maximises the expected
improvement in the solution’s quality. Algorithm 1 starts by keeping the QoS levels
of previously guaranteed tasks and by selecting the lowest requested QoS level for
the new tasks in wi j that complies with any eventual QoS dependency with currently
executing tasks. Note that this is the service configuration with the highest proba-
bility of being feasible without degrading the current level of service of previously
accepted tasks.

The algorithm iteratively work on the problem of finding a feasible set of service
configurations and produces results that improve in quality over time. At each iter-
ation, the search of a better feasible solution is guided by the maximisation of the
users’ expected satisfaction with the provided service. When wi j can be accommo-
dated without degrading the previously accepted tasks’ QoS, the configuration that
maximises the increase in the obtained reward of the new service is incrementally
selected. On the other hand, when QoS degradation is needed to accommodate wi j,
the algorithm incrementally selects the configuration that minimises the decrease in
the obtained reward for all services.

Rewards are determined by considering the proximity of a service proposal with
respect to the weighted user’s QoS preferences expressed in decreasing order (Equa-
tion 1). The penalty parameter can be fine tuned and its value should increase with
the distance to the user’s preferred value for a particular quality attribute.

1 Dependencies among tasks running on different nodes will be handled in future work

Handling QoS Dependencies in Distributed Cooperative Real-Time Systems 195

Algorithm 1 Service proposal formulation
Let τ p be the set of previously accepted tasks
Let τe be the set of tasks whose stability period ∆t has expired
Let τ∗ = τ p∪wi j be the new set of tasks

Step 1: Improve the QoS level of each task τa ∈ wi j
Select Qk j[n], the lowest requested level of service for all k QoS dimensions, considering the
dependencies with the previously accepted tasks τ p, for all newly arrived tasks τa in wi j
Keep the current QoS level of previously accepted tasks τ p

while the new set of local tasks τ∗ is feasible do
for each task τa ∈ wi j do

for each attribute without dependencies with τ p receiving service at Qk j[m] > Qk j[0] do
Upgrade attribute j to the next possible value m−1
Follow dependencies of attribute j in wi j and change values accordingly
Determine the utility increase of this upgrade

end for
end for
Find task τmax whose reward increase is maximum and perform upgrade

end while

Step 2: Find the local minimal service degradation in τ∗ to accommodate each τa ∈ wi j
while the new set of local tasks τ∗ is not feasible do

for each task τi ∈ τe∪wi j receiving service at Qk j[m] > Qk j[n] do
for all QoS attributes do

Degrade attribute j to the previous possible value m+1
Follow dependencies of attribute j in all local tasks τ∗ and change values accordingly
Determine the utility decrease of this downgrade

end for
end for
Find task τmin whose reward decrease is minimum and perform downgrade

end while
return new local QoS optimisation

reward(Si) = 1−
∀Q jk<Qbest j

∑
j=0

w j ∗ penalty j (1)

By combining the rewards of all services’ configurations, a measure of a node’s
global satisfaction with the proposed QoS for the new task set can be obtained
(Equation 2).

R =

n

∑
i=1

reward(Si)

n
(2)

Note that unless all services are executed at their highest requested QoS level,
there is a difference between the current node’s local reward Rcurrent and the maxi-
mum theoretical local reward Rmax. This difference can be caused by either resource
limitations, which is unavoidable, or poor load balancing. The later can be improved
by using the nodes’ local rewards to select the nodes that are going to constitute the

196 Luı́s Nogueira and Luı́s Miguel Pinho

new cooperative coalition [7]. Selecting the node with a higher local reward for sim-
ilar service proposals, not only maximises a particular user’s satisfaction with the
provided service, but also maximises the global system’s utility, since a higher local
reward clearly indicates that the node’s previous set of tasks had to suffer less QoS
degradation in order to accommodate the new tasks.

Algorithm 1 always improves or maintains the current solution’s quality as it has
more time to run. This is done by keeping the best feasible solution so far, if the
result of each iteration is not always proposing a feasible service configuration for
the new task set. However, each intermediate configuration, even if not feasible, is
used to calculate the next solution, minimising the search effort. Instead of a binary
notion of the solution’s correctness, the algorithm returns a proposal and a measure
of its quality. Equation 3 considers the reward achieved by the new arriving service
rSi , the impact on the provided QoS of previous existing tasks rSp and the value of
the previous generated feasible configuration Q′

con f . Initially, Q′
con f is set to zero

and its value is only updated if the achieved solution is feasible.

Qcon f =
(

rSi ∗
∑n

i=0 rSp

n

)(1−Q′con f)

(3)

The algorithm can be interrupted at any time as a consequence of the dynamic na-
ture of the environment [10], or finishes when it finds a feasible configuration whose
quality cannot be further improved, or when it finds that even if all the node’s tasks
would be served at the lowest requested QoS level it is not possible to accommodate
the new requesting tasks in wi j. In this later case, the service request is rejected and
the previously accepted tasks continue to be served at their current QoS levels.

4 Behaviour and Evaluation

Since we are primarily interested in dynamic open real-time scenarios a special
attention was devoted to introduce a high variability in the characteristics of the
conducted simulations. The number of simultaneous nodes in the network varied
from 10 to 50 with resources’ capacities being randomly partitioned among all the
nodes. As a result of this non-equal partition, some nodes could have amounts of
some resources which are significantly different from the average, generating a het-
erogeneous environment.

An application that captures, compresses and transmits frames of real-time data
to end users using a diversity of users’ QoS preferences and inter-dependency re-
lations among tasks was used as a scenario. The application was composed by a
source unit to collect the data, a compression unit to gather and compress the data
that may come from multiple sources, a transmission unit to transmit the data over
the network, a decompression unit to convert the data into the user’s specified for-
mat, and an user unit to display the data in the user’s end device.

Handling QoS Dependencies in Distributed Cooperative Real-Time Systems 197

At randomly generated times, one or more users generated new service requests
at randomly selected nodes expressed the spectrum of acceptable QoS levels in a
qualitative way, ranging from a randomly generated desired QoS level to the ran-
domly generated maximum tolerable service degradation. The relative decreasing
order of importance imposed in dimensions, attributes and values was also ran-
domly generated. The QoS domain used to generate the requests was composed
by 4 quality dimensions, each with 5 attributes and 10 possible values for each
attribute. Promised stability periods were determined by taking into consideration
the observed variations in the tasks’ traffic flow and correspondent resource usage,
adapting the system to the observed environmental changes [8].

Since the proposed algorithm clear splits the formulation of a new service pro-
posal in two different scenarios according to resource availability, the evaluation
of its behaviour was based on those two scenarios. In the first one, the average
amount of resources per node was greater than the average amount of resources
necessary to execute a new service, while in the second one, average service re-
quirements were greater than the average amount of available resources per node,
demanding QoS degradation of previously accepted services. The reported results
were observed from multiple and independent simulation runs, with initial condi-
tions and parameters, but different seeds for the random values used to drive the
simulations, obtaining independent and identically distributed variables, with a rea-
sonably good statistical performance [5]. The random values were generated by the
Mersenne Twister algorithm [6].

The first study evaluated the algorithm’s behaviour when approaching its opti-
mal solution. Anytime algorithms correlate the output’s quality with time in a per-
formance profile [14], a function that maps the time given to an anytime algorithm
(and in some cases also input quality) to the quality of the algorithm’s produced
solution. The performance profile of the proposed anytime algorithm was estimated
by normalising the results of the conducted simulations with respect to the algo-
rithm’s completion time [13], which is the minimal time when the expected quality
is maximal, rather than measuring the algorithm’s absolute execution time on every
run of the simulation.

When there are enough resources to improve the initial feasible solution with-
out degrading the current QoS of the previous tasks (Figure 1 (a)), the solution’s
quality Qcon f is incrementally improved by increasing the new service’s reward.
Consequently, the node’s local reward that is affected by the initial proposed solu-
tion of serving the new arrived service with the minimal requested QoS level, also
increases as the algorithm approaches its final solution. With limited resources (Fig-
ure 1 (b)), an upgrade of the new service’s reward may result in an unfeasible set
of tasks, which demands service degradation of some tasks. At each iteration, the
configuration that minimises the decrease in the obtained reward for all services is
selected.

From Figure 1, two important conclusions can be taken considering the desirable
properties of an anytime algorithm [14]. First, the solution’s quality measure is a
non-decreasing function of time, since the current feasible configuration is only up-
dated if, and only if, another feasible solution with a higher quality for the user’s

198 Luı́s Nogueira and Luı́s Miguel Pinho

Fig. 1 Expected solution’s quality in different scenarios

request under negotiation is found. Second, at an early stage of the computation the
quality of the proposed solution is expected to be sufficiently close to its final value
at completion time. With spare resources (Figure 1 (a)), at only 20% of the compu-
tation time, the solution’s quality for the new service is near 74% of the achieved
quality at completion time. When QoS degradation is needed (Figure 1 (b)), the
configuration for the new service achieves near 85% of its final quality at 20% of
the needed computation time.

A second study compared the computational cost required by the anytime ap-
proach to reach its optimal solution against the traditional version of the algorithm.
The traditional local QoS optimisation proposed in [7] was extended to resolve any
QoS dependencies present in its optimal solution and used in this comparison. It
starts by selecting the user’s preferred QoS level for the new service and stops when
it finds a feasible solution that minimises the impact on the provided global level
of service caused by the new service’s arrival. The comparison’s results were nor-
malised with respect to the completion time of the longest solution.

Fig. 2 Computational cost of both approaches

Figure 2 shows that the anytime version can take more time to achieve the same
optimal solution in both scenarios. Two main reasons explain this difference. First,

Handling QoS Dependencies in Distributed Cooperative Real-Time Systems 199

the anytime version resolves QoS inter-dependencies at each iteration. Recall that
the goal is to be able to interrupt the algorithm at any time and still be able to return a
valid solution. Without any restriction on the needed time to compute its optimal so-
lution, the traditional version only has to resolve dependencies after finding the best
configuration for the individual tasks in a second phase. Dependencies are resolved
by relaxing the optimal values of some of the individual tasks to the maximum value
constrained by the existing inter-dependency relations.

Second, the different approaches to achieve an optimal solution can have an im-
pact on the number of needed iterations, particularly with spare resources. Since
the anytime version tries to quickly find a feasible solution, it starts by considering
the worst requested QoS values for the new service and iteratively improves that
solution until the optimal one is found. On the other hand, the traditional version
starts by trying to provide the best requested level of service for the new tasks and
iteratively degrades all tasks, stopping when it finds a feasible, optimal solution.

Nevertheless, in both scenarios the anytime version is by far quicker to find a
feasible solution. With spare resources, the first feasible solution with a quality near
10% of its optimal value is almost immediately found, and at near 20% of the run-
ning session the solution’s quality is already around 50% of its optimal value. With
limited resources, the anytime version takes about 20% of its computation time to
reach a feasible solution with 20% of its optimal solution’s quality, and at near 40%
of the running session it achieves 50% of its optimal value. These results are in con-
sonance with the performance profiles plotted in Figure 1, which further validate the
ability of the proposed algorithm to quickly find a feasible solution and maximise
the improvement in the expected solution’s quality at each iteration.

5 Conclusions

It is not possible to predict in advance the characteristics of a dynamic open real-
time system’s computational load. Resource needs are usually data dependent and
vary over time as tasks dynamically enter and leave the system. As such, nodes may
need to cooperate with their neighbours in order to fulfil complex service require-
ments imposed by users. However, finding an optimal resource allocation that deals
with both users’ and nodes’ constraints can be quite complex and may take a long
time. The problem is even harder to solve within a useful time when tasks exhibit
unrestricted inter-dependencies among them only known at admission time.

The proposed anytime approach is able to quickly find a sub-optimal solution
at an early stage of the computation time. This service solution is then iteratively
refined as the algorithm has more time to run. Such flexibility in the needed time to
find a feasible service proposal allows a higher adaptation to the dynamically chang-
ing conditions of open real-time systems and, as the achieved results demonstrate,
can be achieved with an overhead that can be considered negligible when compared
against the introduced benefits.

200 Luı́s Nogueira and Luı́s Miguel Pinho

Acknowledgements

This work was supported by FCT (CISTER Research Unit - FCT UI 608 and the
CooperatES project - PTDC/EIA/71624/2006), and by the European Commission
through the ARTIST2 NoE (IST-2001-34820).

References

1. Sourav Ghosh, Ragunathan (Raj) Rajkumar, Jeffery Hansen, and John Lehoczky. Integrated
resource management and scheduling with multi-resource constraints. In Proceedings of the
25th IEEE Real-Time Systems Symposium, pages 12–22, Lisbon, Portugal, December 2004.

2. Xiaohui Gu, Alan Messer, Ira Greenberg, Dejan Milojicic, and Klara Nahrstedt. Adaptive
offloading for pervasive computing. IEEE Pervasive Computing Magazine, 3(3):66–73, 2004.

3. Jingwen Jin and Klara Nahrstedt. Qos specification languages for distributed multimedia
applications: A survey and taxonomy. IEEE MultiMedia, 11(3):74–87, 2004.

4. Ulrich Kermer, Jamey Hicks, and James Rehg. A compilation framework for power and energy
management on mobile computers. In 14th International Workshop on Parallel Computing,
pages 115–131, 2001.

5. Averill M. Law and W. David Kelton. Simulation modeling and analysis. McGraw-Hill, 3rd
edition, 2000.

6. Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling and Com-
puter Simulation (TOMACS), 8(1):3–30, 1998.

7. Luı́s Nogueira and Luı́s Miguel Pinho. Dynamic qos-aware coalition formation. In Proceed-
ings of the 19th IEEE International Parallel and Distributed Processing Symposium, page
135, Denver, Colorado, April 2005.

8. Luı́s Nogueira and Luı́s Miguel Pinho. Dynamic adaptation of stability periods for service
level agreements. In Proceedings of the 12th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pages 77–81, Sydney, Australia, August
2006.

9. Luı́s Nogueira and Luı́s Miguel Pinho. Iterative refinement approach for qos-aware service
configuration. IFIP From Model-Driven Design to Resource Management for Distributed
Embedded Systems, 225:155–164, 2006.

10. Luı́s Nogueira and Luı́s Miguel Pinho. Capacity sharing and stealing in dynamic server-based
real-time systems. In Proceedings of the 21th IEEE International Parallel and Distributed
Processing Symposium, page 153, Long Beach,CA,USA, March 2007.

11. Luı́s Nogueira and Luı́s Miguel Pinho. Shared resources and precedence constraints with
capacity sharing and stealing. In Proceedings of the 22th IEEE International Parallel and
Distributed Processing Symposium (to appear), Miami,Florida,USA, April 2008.

12. Cheng Wang and Zhiyuan Li. Parametric analysis for adaptive computation offloading. In
Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and
Implementation, pages 119–130. ACM Press, 2004.

13. Shlomo Zilberstein. Operational Rationality Through Compilation of Anytime Algorithms.
PhD thesis, Department of Computer Science, University of California at Berkeley, 1993.

14. Shlomo Zilberstein. Using anytime algorithms in intelligent systems. Artificial Inteligence
Magazine, 17(3):73–83, 1996.

Topology-Aware Energy Efficient Task
Assignment for Collaborative In-Network
Processing in Distributed Sensor Systems

Baokang Zhao, Meng Wang, Zili Shao∗, Jiannong Cao, Keith C.C. Chan, and
Jinshu Su

Abstract In the emerging networked sensor systems, collaborative in-network pro-
cessing provides a viable solution to overcome the limited energy and resource con-
straints of one single node. In this novel computing paradigm, it is very critical
to perform task assignment. In this paper, we formally model TETA, an energy
efficient topology-aware real time task assignment problem in wireless sensor net-
works, and prove its NP-completeness. We also propose an ant-based meta-heuristic
algorithm to solve the TETA problem. We implement our algorithm and conduct ex-
periments based on a simulation environment. The experimental results show that
our approach can archive significant energy saving and improve the system lifetime
effectively as well.

1 Introduction

With recent technological advances in sensing, computing, communication and
wireless networking, distributed sensor systems are increasing deployed owing to
their wide popularity of applications. In these systems, collaborative in-network data
processing techniques have been proven to be an effective way to significantly re-
duce energy consumption. In this novel collaborative computing paradigm, applica-
tions are partitioned into tasks that are executed in a distributed manner. To meet the
application requirements, these tasks should be assigned to different sensor nodes.

Baokang Zhao · Jinshu Su
School of Computer, National University of Defense Technology, Changsha, Hunan, P.R.of China
e-mail: bkzhao, sjs@nudt.edu.cn

Meng Wang · Zili Shao (the corresponding author) · Jiannong Cao · Keith C.C.Chan
Department of Computing, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong,
China
e-mail: csmewang, cszlshao, csjcao, cskcchan@comp.polyu.edu.hk

Please use the following format when citing this chapter:

Zhao, B., et al., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded Systems: Design,
Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 201–211.

202

Hence, the task assignment problem is a fundamental issue and plays a critical role
in the collaborative data processing.

Task assignment is a classical problem in the traditional computation paradigm.
However, in distributed sensor systems, several distinct issues, such as energy effi-
ciency,node location, network topology, should be particularly addressed. For in-
stance, in high-performance computing and grid computing, there are many as-
signment techniques focused on interconnect or wired networks. In these mod-
els, processing units are either fully connected via interconnect or wired net-
works [3, 12], or some special topology such as chains[9], trees[2], 2D-mesh, 3D-
Torus[10],etc.These topologies are different from those in wireless environments.

Recently,localized task assignment problem has been investigated in wireless
sensor networks. In [4], Heemin et al. presented a simulated annealing framework
for energy-efficient task assignment and migration in sensor networks. An Integer
Linear Programming model is introduced by Yang and Viktor in [11], they also pro-
posed a three-phase heuristic named EbTA. In [7], An algorithm named EcoMapS
is proposed for jointly mapping and scheduling tasks in single-hop cluster. In [6],
Yuan presented RT-Maps which can provide a real time guarantee. All the above
techniques concentrate on task assignment in one hop. In practice, multi-hop col-
laboration is more popular in wireless sensor networks.

Latest studies have been conducted to multi-hop environments. In [5], Yuan et
al. proposed a multi-hop collaborative in-network processing algorithm. However,
network topology is not considered in their work. In wireless sensor networks, topol-
ogy is a fundamental issue and should be taken into consideration.The approaches
ignoring the location and topology of sensors may not work correctly.

In this paper, we focus on topology aware energy efficient task assignment prob-
lem in wireless sensor networks. To our best, this is a first attempt to deal with the
task assignment problem in multi-hop sensor networks considering the underlying
network topology. Our main contributions are summarized as follows:

• We study and address the topology-aware energy efficient task assignment prob-
lem for multi-hop sensor networks. We formally model TETA, an integrated
model for both reducing the system-level energy consumption and providing
real-time guarantee. We also prove its NP-completeness.

• We propose ANT-TETA, an ant based meta-heuristic algorithm to solve the
TETA problem. Through multiple artificial ants travels the network and assign
the tasks sequentially, this heuristic approach can exploit the underlying topol-
ogy more better, and provides a good solution for TETA. Also, it can be easily
extended to work in a decentralized and parallel way.

• We have implemented this work in a simulation environment, and compare it
with the extension of existing approaches. The experimental results show that our
approach can achieve significant energy saving and improve the system lifetime.

The rest of this paper is organized as follows.In section 2, we introduce the
topology-aware energy efficient task assignment problem. Based on some system
level assumptions, the formal definition of TETA is given. The proof of its NP-
completeness is presented in section 3. We then propose the ANT-TETA algorithm

Baokang Zhao et al.

Topology-Aware Energy Efficient Task Assignment in Distributed Sensor Systems 203

in section 4. We provide the experiments results and analysis in section 5. Finally,
the conclusion is given in section 6.

2 Problem Statement

In this section, we first introduce some realistic assumptions. Based on these as-
sumptions, we formally define the application model, network model and energy
model. Thereafter, the formal problem statement is given.

• System Assumptions

We assume the following system assumptions:

1. A sensor network consists of heterogeneous nodes. Each sensor node is equipped
with a computing unit,sensors and a wireless module. Nearby nodes form a logi-
cal multi-hop computation environment called cluster. Applications are executed
inside the cluster in a collaborative manner.

2. We adopt the collision free model[10]. The link collision can be avoided by link
scheduling approaches.

3. The network topology information is available for sensor nodes inside the cluster.

• Application Model

In distributed and parallel computing, applications are modeled as DAG graphs. We
assume the target application can be represented by T G = (VT ,ET ,VET ,vw,ew,TC).
VT denotes all the computational tasks,and vw represents tasks’ computational over-
head. ET consists of communication edges between associated tasks,and ew is the
function of communication throughput on the edges. In sensor applications, the en-
try tasks are always from special sensor nodes. The set of entry tasks is denoted as
VET . The overall timing constraint is assumed to be TC.

• Network Model

The network topology is always modeled as a connected graph NG =(VG,EG,cc,dw).
VG is the set of sensor nodes,EG is the set of communication edges.To enhance
the network lifetime,each sensor node can only perform limited computation,and
this limitation is modeled as cc. The communication distance between two nodes is
modeled as function dw.

• Energy Model

We adopt the same energy consumption model as [8].

Pcpu = αCL ∗V 2 ∗ f + Ileak ∗ f (1)

PT X (d) = Eelec + εampd∂ (2)
PRX = Eelec (3)

204

In the CPU power model,α ,CL and Ileak are processor dependent parameters,V
and f denote the working voltage and frequency,respectively.The transmitting and
receiving power of the wireless module are shown in equation 2 and 3. Eelec and
εamp are electronic parameters, d is the transmitting distance, and 2≤ ∂ ≤ 4. In our
experiments, we adopt the parameters of µAMPS[8].

• Task Assignment

In general, the goal of task assignment is to assign tasks to sensor nodes. Assume
m represents the assignment result.That is, task Ti is assigned to a sensor node
m(Ti).After the assignment is done, the communication edge is mapped to the short-
est path between nodes. In a specified assignment m, we assume E(m)

comp(Ti) denotes
the energy consumption of task Ti, E(m)

comm(ei j) denotes the energy consumption of
communication edge ei j, and L(m) is the finish time of application.

• Problem Definition

Given task graph and network topology, the objective of task assignment is :
Minimize:

E(m)
total = ∑

ti∈VT

E(m)
comp(ti)+ ∑

ei, j∈ET

E(m)
comm(ei, j) (4)

Subject to:
L(m)≤ TC (5)

3 Problem Complexity

In this section, we prove that the TETA problem is NP-complete by a reduction from
the subgraph isomorphism problem.

Definition 1. the TATAS DP problem:

Given a positive number K,TC, a task graph T G, a network topology NG, an as-
signment m, is the total energy consumption K, and the total execution time for the
task graph T G L(m)≤ TC?

Definition 2. Sub Graph Isomorphism problem:[1]

Given two graphs G1 = (V1,E1) and G2 = (V2,E2), G1 is isomorphic to G2 if there
is a function f which maps the vertices of G1 to vertices of G2 such that for all pairs
of vertices x,y in V1, edge (x,y) is in E1 if and only if the edge (f (x), f (y)) is in E2.

Theorem 1. the decision problem of the TATAS problem is NP-complete.

Proof: Since we can check E(m)
total and L(m) using equations (1-5), and this process

can be finished in polynomial time, The TATAS DP problem belongs to NP.

Baokang Zhao et al.

205

Assume I =< G1,G2, f > is an instance of sub graph isomorphism, where G1 =
(V1,E1) and G2 = (V2,E2), f is a mapping function from G1 to G2. We will construct
a TATAS DP problem instance from I.

Let a vertex d be any node in V1, A task graph T G = (V1,E1,{d},vw,ew) is
constructed from G1 directly. The function vw and ew is configured to assign and
for each node and edge G1, respectively. A network topology NG = (V2,E2,dw)
from G2.For each edge ei, j in E2, dw(ei, j) = 1.

We assume the total computation energy consumption as Ecomp. We set TC to
infinite and set K as

K = Ecomp + ecomm ∗ (2∗Eelec + εamp)∗ |E1| (6)

The mapping function f
′

from T G to NG can be constructed from f in polyno-
mial time by:

∀v ∈V1, f
′
(v) = f (v) (7)

∀ei, j = (vi,v j) ∈ E1, f
′
(ei, j) = (f (vi), f (v j)) (8)

We will prove that f
′
is a feasible solution to the TATAS DP problem if and only

if f is a solution to sub graph isomorphism decision problem I.
Suppose f is a solution to sub graph isomorphism decision problem I. In I

′
, the

total energy consumption of mapping f
′

will be

Etotal = Ecomp + ∑
ei, j∈E1

E(ei, j)

= Ecomp + ecomm ∗ (2∗Eelec + εamp)∗ |E1| ≤ K (9)

Thus, f
′

is a feasible solution to I
′
.

On the contrary, if a solution f
′

for I
′

is found, we can also prove f is a feasible
solution by reduction to absurdity. If any edge in the task graph is mapped to a path
with more than one edge, then the energy consumption in this communication will
be larger than ecomm ∗ (2 ∗Eelec + εamp). Therefore, the total energy consumption
will be:

Etotal = Ecomp + ecomm ∗ (2∗Eelec + εamp) ∑
e∈E1

p(e)

≥ Ecomp + ecomm ∗ (2∗Eelec + εamp)∗ |E1|= K (10)

It violates the assumption that f
′

is a valid solution to I
′
. So the TETA problem

is NP-complete.

Topology-Aware Energy Efficient Task Assignment in Distributed Sensor Systems

206

4 The Proposed ANT-TETA Algorithm

Since the TETA problem is NP-complete, heuristic approaches can be proposed.
Inspired by the efficiency of ant colony optimization in solving graph-related prob-
lems, we propose an ant based task assignment algorithm named ANT-TETA. In
this section, we first introduce an overview of ANT-TETA, and then describe its key
components in section 4.2.

4.1 Overview

The overview of the ANT-TETA algorithm is shown in Fig.1.

Input: Task Graph T G, Network Topology Graph NG
Output: assignment from T G to NG.
Initialize the pheromone matrix and other data structures.;1
foreach ant k do2

ant k build its task list L(k) via topological sorting using Depth-First Search;3
end4
while terminate condition is not meet do5

foreach ant k do6
L = L(k);7
while L is not empty do8

Pick out the next unassigned task i from L in sequential order;9
Build the candidate node set CS(i);10
For each node j in CS(i), calculate its probability through heuristics and11
pheromone;
Select node j stochastically according to its probability;12
Assign task i to node j, update the assignment information and other13
information such as node capacity;

end14
end15
update the pheromone matrix;16
update other statistics information;17

end18
Output the final solution;19

Fig. 1 The ANTS-TETA algorithm

We assume the number of entry tasks is q. ANT-TETA tries to obtain a better as-
signment through the collaboration of q artificial ants. In step (2-4), each ant k will
build a list L(k) by topological sorting the task graph from its corresponding entry
task nodes. L(k) determines the task assignment order of ant i in step(8-12). From
step (5), ANT-TETA performs task assignment in a standard ant system manner. In
step (6-15), ant k assigns tasks to sensor nodes one by one following the sequen-

Baokang Zhao et al.

207

tial order of L(k).Since the assignment of ants executes independently, this can be
done in a distributed and parallel manner. After all the ants finish its assignment,
the pheromone matrix and other information is updated as in step16-17. Since this
process is based on the well known ant system, we will only focus on some critical
steps in the next subsection.

4.2 Key Components

• Heuristic desirability

Heuristic desirability ηi j implies the fitness function of assign task i to node j. In
ANT-TETA,let Ei j and E(total)

i j denotes increase and total energy consumption if task
i is assigned to node j, and Li denotes the application execution time after task i is
assigned to node j,the heuristic desirability is defined as

ηi j =

{
λ Ei j

E(total)
i j

+ µ Li
TC if Li ≤ TC

0 otherwise
(11)

where λ and µ is application specific parameters.

• Building candidate set

In step (10),let rc(N j) denotes the remain computation capacity in node N j, ant k
will construct a candidate node set CS(k)

Ti
based on the computation requirements:

CS(k)
Ti

= {N j|rc(N j)≥ cc(Ti)} (12)

• Probability of assignment

In step (11), it plays a critical role in calculating assignment probability. Let pk
i j

denotes the probability of ant k assigns task i on node j is given by

pk
i j(t) =

∑l∈CS(k)
Ti

[τi j(t)]α · [ηi j(t)]β

[τi j(t)]α · [ηi j(t)]β
(13)

Where t is the iteration number,and α,β determines the weight given to the heuristic
information and pheromone, respectively.

• Update the pheromone information

In step(16), when all the ants find a solution, the pheromone matrix will be updated
with

τi j(t +1) = (1−ρ) · τi j(t)+
m

∑
k=1

∆τk
i j (14)

Topology-Aware Energy Efficient Task Assignment in Distributed Sensor Systems

208

, where ρ represents the pheromone evaporation,∆τk
i j is the amount of pheromone

ant k deposits on the assignment (i, j):

∆τi j =
{

Q/Etotal
k if i is assigned to j by ant k

0 otherwise
(15)

where Etotal
k denotes the final energy consumption of assignment solution by ant k,

and Q is a system parameter and it is application specific.

5 Simulation Results

We evaluate our ANT-TETA algorithm through simulations. In this section, we first
introduce our simulation platform and parameters. Thereafter,we compare the re-
sults of our ANTS-TETA algorithm with the multi-hop extension of DCA[8]. Ex-
perimental results show that our algorithm can archive significant energy savings
and improve the system lifetime.

5.1 Simulation Platform and Parameters

In order to evaluate the performance of the proposed algorithm, we build a simu-
lation platform. As illustrated in Fig 2. This platform consists of three parts: DAG
regulator, network topology generator(NTG),and assignment algorithms module.

Fig. 2 The simulation platform

The DAG regulator is based on the TGFF tool. We use TGFF to generate DAG
task graph,and regulate the results to meet the application requirements.In our exper-
iments, we set the number of entry tasks to be 8, and set the maximum in degree and

TGFF

DAG

Regulator

DAG specification

NTG

Network

parameters

DAG Network
Mapping

Constaints

Assign Algorithms

results

Baokang Zhao et al.

209

out degree to be 3 and 5,respectively. The computation workload and communica-
tion throughput are randomly chosen within the range of (100KCC, 600KCC) and
(500bits, 1000bits). The raw sensing data is larger and is randomly chosen in the
range of (4kbits, 8kbits).The computation workload and communication through-
put are randomly chosen within the range of (100KCC, 600KCC) and (500bits,
1000bits),and its battery capacity is set to 1000Amh.

NTG is used to generate a random network topology. It assumes that the sink
node is placed in the center of a 1km*1km area. It starts with placing specified
number of randomly generated nodes within the area. Afterwards, it checks the con-
nectivity. The nodes with a connectivity degree of zero is regarded as faulty nodes
and will be replaced with new random nodes.This process continues until the node
amount can meet the requirements.The computation capability of each node is se-
lected within the range of (500KCC, 800KCC).

5.2 Results and Analysis

We compare our algorithm with the multi-hop extension of DCA. DCA represents
the traditional and popular way of data processing. It executes the entry tasks on the
corresponding sensing node, transmits raw data to the cluster head, and processes
all the other tasks on the cluster head. We extend DCA with multi-hop support by
constructing communication paths from entry sensors to the cluster head.

Fig. 3 The comparison between ANT TETA and DCA

As shown in Fig 3, we compare ANT-TETA with DCA in terms of total energy
consumption. With the number of nodes increases, the total energy consumption
of DCA increases. Since DCA execute most tasks on the cluster head, its energy
consumption depends on the communication activities. Thus, the change of network

Topology-Aware Energy Efficient Task Assignment in Distributed Sensor Systems

210

topology will influence it slightly. In contrast, the ANT-TETA is able to reduce its
total energy consumption effectively for the underlying network topology.

The lifetime of sensor network is defined as the time after the first node runs
out its battery.Compared with DCA, Our ANT-TETA can archive at most 28.9%
improvements for the network lifetime. The reason is that DCA assigns too many
tasks on the cluster head, which will exhaust the energy of the cluster head. What’s
more, this result comes from computation dominated applications. If the communi-
cation overhead is high, it will be more worse. Besides, in DCA, due to the huge
size of raw sensed data, the other nodes in the transmitting path consume more en-
ergy. The result also indicates that the task assignment techniques of collaborative
in-network processing are able to enhance the network lifetime dramatically.

6 Conclusion

In this paper, we formally define TETA, an energy efficient topology-aware real
time task assignment problem in distributed sensor systems, and proved its NP-
completeness. An ant-based meta-heuristic algorithm named ANT-TETA is pro-
posed to solve the TETA problem. We also implement our algorithm in a simu-
lation environment and conduct experiments. The experimental results show that
our approach can archive significant energy saving and improve the system lifetime
effectively as well.

Acknowledgements The work described in this paper is partially supported by the grants from
the Research Grants Council of the Hong Kong Special Administrative Region, China (CERG
526007(PolyU B-Q06B), PolyU A-PA5X), the National Research Foundation for the Doctoral
Program of Higher Education of China (No.20049998027), and the National Science Foundation
of China (No.90604006).

References

1. M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

2. C.-H. Lee and K. G. Shin. Optimal task assignment in homogeneous networks. IEEE Trans.
Parallel Distrib. Syst., 8(2):119–129, 1997.

3. G. Malewicz, A. L. Rosenberg, and M. Yurkewych. On scheduling complex dags for internet-
based computing. In IPDPS ’05: Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium, page 66, Washington, DC, USA, 2005.

4. H. Park and M. B. Srivastava. Energy-efficient task assignment framework for wireless sensor
networks. Technical report, September 7 2003.

5. Y. Tian. Cross-layer collaborative in-network processing in multihop wireless sensor net-
works. IEEE Transactions on Mobile Computing, 6(3):297–310, 2007.

6. Y. Tian, J. Boangoat, E. Ekici, and F. Ozguner. Real-time task mapping and scheduling for
collaborative in-network processing in dvs-enabled wireless sensor networks. ipdps, 2006.

Baokang Zhao et al.

211

7. Y. Tian, E. Ekici, and F. Ozguner. Energy-constrained task mapping and scheduling in wire-
less sensor networks. IEEE International Conference on Mobile Adhoc and Sensor Systems
Conference, 2005., pages 8 pp.– 12, 7-10 Nov. 2005.

8. A. Wang and A. Chandrakasan. Energy-efficient dsps for wireless sensor networks. IEEE
Signal Processing Magazine, 43(5):68–78, 2002.

9. C.-C. Yeh. Power-aware allocation of chain-like real-time tasks on dvs processors. IEICE -
Trans. Inf. Syst., E89-D(12):2907–2918, 2006.

10. Y. Yu, B. Hong, and V. K. Prasanna. On communication models for algorithm design in
networked sensor systems: a case study. Pervasive Mob. Comput., 1(1):95–121, 2005.

11. Y. Yu and V. K. Prasanna. Energy-balanced task allocation for collaborative processing in
wireless sensor networks. Mob. Netw. Appl., 10(1-2):115–131, 2005.

12. M. Yurkewych. Toward a theory for scheduling dags in internet-based computing. IEEE
Trans. Comput., 55(6):757–768, 2006.

Topology-Aware Energy Efficient Task Assignment in Distributed Sensor Systems

Data Partitioning Techniques for Partially
Protected Caches to Reduce Soft Error Induced
Failures

Kyoungwoo Lee, Aviral Shrivastava, Nikil Dutt, and Nalini Venkatasubramanian

Abstract Exponentially increasing with technology scaling, soft errors have become
a serious design concern in the deep sub-micron embedded systems. Partially Pro-
tected Cache (PPC) is a promising microarchitectural feature to mitigate failures
due to soft errors in embedded processors. A processor with PPC maintains two
caches, one protected and the other unprotected, both at the same level of memory
hierarchy. By finding out the data more prone to soft errors and mapping only that to
the protected cache, the failure rate can be significantly improved at minimal power
and performance penalty. While the effectiveness of PPCs has been demonstrated
on multimedia applications – where the multimedia data is inherently resilient to
soft errors – no such obvious data partitioning exists for applications in general.
This paper proposes profile-based data partitioning schemes that are applicable to
applications in general and effectively reduce failures due to soft errors at mini-
mal power and performance overheads. Our experimental results demonstrate that
our algorithm reduces the failure rate by 47× on benchmarks from MiBench while
incurring only 0.5% performance and 15% power overheads.

1 Introduction

Reliability is becoming the paramount concern in system design in the deep sub-
micron era [1]. With technology scaling, i.e., smaller feature size, lower voltage
level, etc., microprocessors are becoming increasingly prone to transient faults [9].
A transient fault results in erroneous program states and eventually incorrect out-

Kyoungwoo Lee · Nikil Dutt · Nalini Venkatasubramanian
Department of Computer Science, School of Information and Computer Sciences, University of
California, Irvine, CA 92697, USA, e-mail: {kyoungwl,dutt,nalini}@ics.uci.edu

Aviral Shrivastava
Department of Computer Science and Engineering, School of Computing and Informatics, Arizona
State University, Tempe, AZ 85281, USA e-mail: Aviral.Shrivastava@asu.edu

Please use the following format when citing this chapter:

Lee, K., et al., 2008, in IFIP International Federation for Information Processing, Volume 271; Distributed Embedded Systems: Design,
Middleware and Resources; Bernd Kleinjohann, Lisa Kleinjohann, Wayne Wolf; (Boston: Springer), pp. 213–225.

214 Kyoungwoo Lee, Aviral Shrivastava, Nikil Dutt, and Nalini Venkatasubramanian

puts, but it is non-destructive, i.e., resetting the device, restores normal behavior.
While transient faults occur due to several reasons, radiation is more responsible
for transient faults than all the other causes combined [4]. Radiation-induced faults
occur when a high energy radiation particle, e.g., an alpha particle, a neutron or a
free proton, strikes the diffusion region of a CMOS transistor and produces charge,
which results in toggling the logic value of the transistor. This phenomenon of
change in the logic state of a transistor is called an Upset. An upset may result
in a change in the architectural state of a processor. The changed architectural state
of a processor is called an Error. An error can cause an observable difference in the
behavior of the program, which is termed as a Failure.

Among all the microarchitectural features in a processor, on-chip caches are most
susceptible to upsets. This is due to the fact that caches cover majority of chip area,
and operate at much lower voltage than combinational circuits [7, 16]. In addition,
while an upset in combinational circuits becomes an error only if it is latched at
the right moment, the absence of latching-window masking in caches ensures that
all upsets translate into errors. Indeed, more than 50% of errors occur in memories
[17]. Consequently, it is very important to prevent errors in memory structures.

Several microarchitectural techniques have been proposed to reduce the impact
of soft errors in memories, the most popular being the use of Error Correction Codes
(ECC). While the ECC-based techniques are well suited for off-chip memories, they
are inappropriate for caches, as they are highly sensitive to any power and perfor-
mance overheads. In fact, implementing an ECC scheme in caches increases the
cache access time by up to 95% [14] and power consumption by up to 22% [24].
Partially Protected Cache (PPC) was proposed by Lee et al. [13] to mitigate the
impact of soft errors on caches. A PPC architecture has two caches, one protected
against soft errors, and the other unprotected, at the same level of memory hierarchy.
The intuition behind PPC is that when soft errors occur, some data is more likely to
cause failures than others. By mapping only this data to the protected cache, the fail-
ure rate can be significantly reduced at minimal power and performance overheads.
PPCs were demonstrated to be extremely effective for multimedia applications. In
multimedia applications, the multimedia data itself is error-resilient. For example,
in an image or video processing application, a soft error in the image or video only
causes a slight loss in Quality of Service (QoS). In contrast, most other data, e.g,
loop control variables, stack pointers, etc., are not error-resilient. Any soft error in
these variables may lead to a failure. However, no obvious data partitioning exists
for general applications. The absence of a data partitioning scheme for applications
in general severely limits the applicability of PPC architectures.

In this paper, we propose schemes to partition the data of general applications
into the two caches of PPC architecture and to achieve high reduction in failure
rate, at minimal power and performance penalty. We develop and test several data
partitioning algorithms. Monte Carlo exploration is unable to find interesting data
partitions. While Genetic Algorithm efficiently searches the exploration space, it
does not achieve high reduction in failure rate. Our approach, DPExplore, efficiently
prunes the search space, and uncovers Pareto-optimal data partitions. Experimen-
tal results on the HP iPAQ h4600 [10]-like processor-memory subsystem running

Data Partitioning Techniques for Partially Protected Caches 215

benchmarks from MiBench [8] demonstrate that the PPC architectures reduce the
failure rate by 47× with 0.5% performance and 15% energy penalty on average.

2 Related Work

Radiation-induced soft errors have been under investigation since late 1970s. Due to
incessant technology scaling, soft error rate (SER) has exponentially increased [9],
and now it has reached a point, where it becomes a real threat to system reliability.
Microarchitectural solutions attempt to reduce the number of upsets that translate
into errors, and/or errors that result in failures. Solutions at the microarchitecture
level can be categorized based on the components where they are applied: the com-
binational components, the sequential components, and the memory components.

Solutions for Combinational Logic Logic elements were considered more ro-
bust against soft errors than memory elements but many researchers predict that the
logic soft errors will become one of main contributions to the system unreliability
[4, 23, 28]. The simplest and most effective way to reduce failures due to soft errors
in combinational logic is Triple Modular Redundancy (TMR) [25], which typically
uses three functionally equivalent replicas of a logic circuit and a majority voter.
But the overheads of hardware and power for conventional TMR exceed 200% [23].
Duplex redundancy [18, 23] is also available but it requires more than 100% area
and power overheads without any optimization techniques. In order to reduce the
high overheads in conventional redundancy techniques, Mohanram et al. in [18] pre-
sented a partial error masking by duplicating the most sensitive and critical nodes
in a logic circuit based on the asymmetric susceptibility of nodes to soft errors. Re-
cently, Nieuwland et al. in [23] proposed a structural approach analyzing the SER
sensitivity of combinational logic to identify the critical components at circuits.

Solutions for Sequential Logic Temporal redundancy is another main approach
that has been used to combat soft errors in circuits. In order to detect soft errors,
Nicolaidis in [22] applied fine time-grain redundancy within the clock cycle greater
than the duration of transient faults by using the temporal nature of soft errors. Sim-
ilarly, Anghel et al. in [2] exploited the temporal nature to detect timing errors and
soft errors by means of time redundancy. Krishnamohan et al. in [12] proposed the
time redundancy methodology by using the timing slack available in the propagation
path from the input to the output in CMOS circuits. A Razor flip-flop was presented
in [6] to detect transient errors by sampling pipeline stage values with a fast clock
and with a time-borrowing delayed clock.

Solutions for Memories By far, reducing soft errors in memories has been the
most extensive research topic. Error detection and correction codes (EDC and ECC)
have been widely investigated and implemented as the most effective schemes to de-
tect and correct soft errors in memory systems. However, an ECC system consists of
an encoding block as well as a decoding block responsible for detection and correc-
tion, and of extra bits storing parity values. Thus, ECC-based techniques consume
extra energy and incur performance delay as well as additional area cost [14, 24, 25],
and are therefore not suitable for caches. Thus, only a few processors such as the

216 Kyoungwoo Lee, Aviral Shrivastava, Nikil Dutt, and Nalini Venkatasubramanian

Intel Itanium processor [26] protect L2 and L3 caches with ECC, but we are not
aware of any processor employing ECC-based protection mechanism on L1-cache.
This is mainly due to high overheads of ECC implementation [11, 19].

Mukherjee et al. in [20] proposed a cache scrubbing technique that can avoid po-
tential double-bit errors by reading cache blocks periodically and fixing all single-bit
errors. Li et al. in [15] evaluated the drowsy cache and the decay cache exploiting
voltage scaling and shut-down schemes, respectively, in order to efficiently decrease
the power leakage. They also proposed an adaptive error correcting scheme to dif-
ferent cache data blocks, which can save energy consumption by protecting clean
data less than dirty data blocks. Kim in [11] proposed the combined approach of
parity and ECC codes to generate the reliable cache system in an area-efficient way.
However, they all exploit expensive error correcting codes in order to protect all
the data unnecessarily. Recently, Sugihara et al. in [30] presented a task scheduling
method to dynamically switch the operation modes between the performance and
vulnerability in cache architectures of multiprocessor systems.

Partially Protected Cache Architecture Lee et al. in [13] proposed PPC archi-
tecture and demonstrated the effectiveness in reducing the failure rate with minimal
power and performance overheads. However, the effectiveness of PPCs has been
limited only on multimedia applications, and there is no known approach to use
PPCs for general applications.

The contribution of this paper is in developing techniques to utilize PPC archi-
tectures for applications in general and establish PPC as an effective microarchi-
tectural solution to mitigate failures due to soft errors.

3 Partially Protected Caches and Problem Definition

Fig. 1 Partially Protected Cache Architecture: one protected cache and the other unprotected cache
at the same level of hierarchy

In a processor with Partially Protected Cache (PPC), the processor has two
caches at the same level of memory hierarchy. As shown in Fig. 1, one of two caches
is protected from soft errors, while the other is unprotected. Any protection mech-
anism can be implemented in the protected cache, e.g., increasing the thickness of
oxide layer of the transistors, or adding redundancy logic like a Hamming Code
[25]. The protected cache is typically smaller than the unprotected cache to keep
the access latencies of both caches the same. Each page in the memory is mapped
exclusively to one of the caches in a PPC architecture. The page mapping is set as

Processor
Pipeline

Memory

Processor

Unprotected Cache

TLB

Protected Cache

Protection
Overhead

Data Partitioning Techniques for Partially Protected Caches 217

a page attribute by the compiler. The mapping of the pages present in the cache
resides in the Translation Lookaside Buffer (TLB). On a cache access, first a TLB
lookup is performed to find out if the page is present in the cache, and if so, in which
one? Thus, only one cache lookup is performed per cache access.

Fig. 2 Failure Rate Reduction by Moving Pages from the Unprotected Cache into the Protected
Cache One by One in a PPC

While PPC architectures are very effective in reducing the failure rate with min-
imal performance and power overheads, the effectiveness hinges on the ability to
partition the application data between the two caches in a PPC. To motivate for the
need of page partitioning to reduce the failure rate, we perform a small experiment.
First we map all the application pages to the unprotected cache, and then move the
pages to the protected cache one by one. Fig. 2 plots the failure rate at each step
of this exploration for susan corners, and shows that the failure rate drops rapidly
as pages are moved from the unprotected cache to the protected cache. However,
the pages have to be carefully moved to the protected cache, as it is small; mapping
too many pages to the small cache increases the misses and results in significant
penalties of performance and energy consumption due to frequent memory accesses.
Therefore, the data partitioning is a multi-objective optimization problem in which
we need to reduce the failure rate, at minimal overheads of performance and energy
consumption. Since, even medium sized applications use a large number of pages;
our benchmarks from [8] access 27 - 95 pages. Owing to its exponential complexity,
enumerative techniques (e.g. trying all the possible page partitions) do not work.

We formulate our problem as: Given an allowable performance degradation, de-
termine the page partitioning to minimize the failure rate at minimal energy penalty.

4 Our Approach

4.1 Vulnerability: A Metric for Failure Rate

To partition pages for a PPC architecture, we need a metric to quantitatively com-
pare page partitions in terms of susceptibility to soft errors. We use the concept of

Failure Rate (Susan Corners)

0

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

The number of pages mapped into the protected cache

N
o

rm
al

iz
ed

 F
ai

lu
re

 R
at

e
(L

O
G

)

218 Kyoungwoo Lee, Aviral Shrivastava, Nikil Dutt, and Nalini Venkatasubramanian

vulnerability, proposed in [3, 21], to partition the data into the protected and unpro-
tected caches in a PPC. If an error is injected in a variable that will not be used, the
error does not matter. However, if the erroneous value is used in the future, then it
will result in a failure. Thus a data is defined to be vulnerable for the time it is in
the unprotected cache until it is eventually read by the processor or written back to
the memory. The vulnerability of an application is the summation of the individual
data vulnerability measured in cycles to present the vulnerable time of this data.

Fig. 3 Vulnerability and Failure Rate: vulnerability is a good metric for estimating failure rate

To validate our idea using vulnerability as a failure rate metric, we simulated
the susan corners benchmark from [8] on a modified sim-outorder simulator from
SimpleScalar [5] to model HP-iPAQ [10] like system for various L1 cache sizes.
Our modified simulator calculated the vulnerability for each cache size as discussed
above. To estimate the failure rate, we injected soft errors on data caches for each
run of the benchmark, counted the number of failed runs out of a thousand runs,
and calculated the failure rate in %. Each run is defined as a success if it ends and
returns the correct output. Otherwise, it is a failure. Fig. 3 plots the vulnerability and
the failure rate obtained by simulations and shows that the shape of the vulnerability
closely matches the failure rate curve. Other applications also show similar trends.
On average, the error in predicting the failure rate using vulnerability is less than
5%. In this paper, we use vulnerability as the metric to estimate the failure rate, and
perform automated design space exploration to decide the page partitioning between
the two caches of a PPC. Reducing vulnerability can be contrary to performance
improvement. For example, to reduce the vulnerability of data, data should not re-
main in the cache for long. It is better to evict and reload the reused data to reduce
the vulnerability, but this degrades performance. Therefore, there is a fundamental
trade-off between performance improvement and vulnerability reduction.

4.2 Page Partitioning: DPExplore

Fig. 4 outlines our DPExplore partitioning algorithm, which starts from the case
when no page is mapped to the protected cache. In each step, pages are moved

Vulnerability vs. Failure Rate (Susan Corners)

0.0E+00

5.0E+09

1.0E+10

1.5E+10

2.0E+10

2.5E+10

3.0E+10

3.5E+10

128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

Cache Size (in Bytes)

V
u

ln
e

ra
b

il
it

y
 (

in
 C

y
c

le
s

)

0

5

10

15

20

25

30

35

F
a

il
u

re
 R

a
te

 (
in

 %
)

Vulnerability Failure Rate

Data Partitioning Techniques for Partially Protected Caches 219

from the unprotected to the protected cache, to minimize the vulnerability under the
runtime penalty. Our page partitioning algorithm takes three inputs: (i) allowable
runtime penalty (rPenalty), (ii) exploration width (eWidth), the number of partitions
maintained as best configurations for the whole exploration, and (iii) pCount, the
number of pages in a benchmark. DPExplore searches for page mappings that will
suffer no more than the specified rPenalty, while trying to minimize the vulnera-
bility. DPExplore maintains a set of best page mappings found so far (Line 05) in
bestCon f igs, sorted in an increasing order of vulnerability. After initialization, the
algorithm goes into a forever loop in Line 07. It takes each existing best solution
and tries to improve it by mapping a page to the protected cache (Lines 11-12). If
the new page mapping is better than the worst solution in the newBestCon f igs, then
the new page mapping is saved in the list. The loop in Lines 09-21 is one step of
exploration. After each step, the new set of page mappings is trimmed down to ex-
ploration width (Lines 22-24). The termination criterion of the exploration is when
an exploration step cannot find any better page mapping. In other words, no page
can be mapped to the protected cache to improve vulnerability (Lines 25, 27) under
the runtime penalty. Otherwise, the global collection of the best page mappings are
updated (Line 26).

DPExplore(rPenalty, eWidth, pCount)
01: pageMap0 = 0...0
02: runtime, power,vulnerability = simulate(pageMap0)
03: con f ig0 = (pageMap0,runtime, power,vulnerability)
04: for (k = 0;k < eWidth;k ++)
05: bestCon f igs.insert(con f ig0)
06: endFor
07: for (; ;)
08: newBestCon f igs = bestCon f igs
09: for (i = 0; i < eWidth; i++)
10: for (j = 0; j < pCount; j ++)
11: testCon f ig = addPage(newBestCon f igs[i], j)
12: runtime, power,vulnerability = simulate(testCon f ig.pageMap)
13: if (runtime < con f ig0.runtime× 100+rPenalty

100)
14: if (vulnerability < newBestCon f igs[0].vulnerability)
16: newBestCon f igs.insert(testCon f ig,runtime, power,vulnerability)
17: newBestCon f igs.sort()
18: endIf
19: endIf
20: endFor
21: endFor
22: for (i = newBestCon f igs.length(); i > eWidth; i−−)
23: newBestCon f igs.delete[i−1]
24: endFor
25: if (newBestCon f igs[0].vulnerability < bestCon f igs[0].vulnerability)
26: bestCon f igs = newBestCon f igs
27: else break;
28: endIf
29: endFor

Fig. 4 DPExplore: an exploration algorithm for data partitioning

Note that our exploration technique is a profile-based approach, which works
well if the page mapping of application codes and input data does not change. Our
proposal, DPExplore, is very effective for such applications.

220 Kyoungwoo Lee, Aviral Shrivastava, Nikil Dutt, and Nalini Venkatasubramanian

5 Experiments

5.1 Setup

Fig. 5 DPExplore Page Partitioning Framework for PPC Architectures

To demonstrate the effectiveness of DPExplore in exploring and discovering the
partition with minimal vulnerability at minimal power and runtime1 penalty, we
have built an extensive simulation framework. The application is first compiled to
generate an executable. The application is then profiled, and the Page Vulnerability
Estimator calculates the vulnerability of each page accessed by the application. The
pages are then sorted according to their vulnerabilities, and then Data Partitioning
Heuristics partitions and maps the pages to the two caches in the PPC architecture.
Through the simulations, Data Partitioning Heuristics finds out the page mapping
with minimal vulnerability under the runtime constraint. Finally, the executable and
the page mapping are provided to the platform, which runs the application and gen-
erates outputs such as runtime, energy consumption, and vulnerability.

The platform is modeled using sim-outorder simulator from the SimpleScalar
toolchain [5]. The simulation parameters have been setup so as to model an HP
iPAQ h4600 [10] like processor memory system. We model a PPC architecture con-
sisting of a 4 KB of unprotected cache and a 256 bytes of protected cache with line
size of 32 bytes, 4 way set-associativity, and FIFO cache replacement policy. This
model protects one small cache with an ECC-based technique such as a Hamming
Code [25]. The overheads of power and delay for ECC protected caches are esti-
mated and synthesized using the CACTI [27] and the Synopsys Design Compiler
[31] as in [13]. And also SimpleScalar sim-outorder simulator has been modified to
include the vulnerability computation. The memory subsystem includes the caches,
external buses, and 2 off-chip SDRAMs. To estimate the memory subsystem energy
consumption, we use the power models presented in [29].

The HP iPAQ is a wireless handheld device, and MiBench is the set of bench-
marks that are representative of applications that run on wireless handheld de-
vices [8]. MiBench suite is therefore the right set of benchmarks that are supposed
to run on the iPAQ, and we choose them. However, we pick only those benchmarks
in which the runtime difference between the cases when all data is mapped to the

1 Here runtime and performance are used interchangeably and represent the number of cycles for
execution of an application

Compiler

Executable
Vulnerabilities

PagePage
Vulnerability

Estimator

Data
Partitioning
Heuristics

Page
Mapping

Platform

Application

Runtime
Vulnerability
Energy

Data Partitioning Framework

Data Partitioning Techniques for Partially Protected Caches 221

4 KB unprotected cache, and when all data to the 256 bytes protected cache in the
PPC is more than 5%. This is to avoid benchmarks for which only the small pro-
tected cache is enough. Note that although some of the benchmarks in MiBench
are multimedia applications (for which an obvious data partitioning exists), we use
DPExplore to partition the data of all applications in the selected benchmark suite.

We compare the effectiveness of our approach DPExplore with two traditional
exploration techniques,

Monte Carlo (MC) In MC, several page partitions are randomly generated and
tested by simulation for their effectiveness in power, runtime and vulnerability.

Genetic Algorithm (GA) For GA, initially, we form a randomly generated se-
quence, representing a page mapping. At each successive generation, the superior
sequences in terms of vulnerability are selected as the evolutionary page mappings
through the simulations. In order to generate the next sequence, we implemented
two GA operations such as mutation and crossover. For the mutation operation, a
pseudo-random number tells whether each page mapping in a sequence is modified
or not. For the crossover operation, one point is selected in the current sequence and
the bits are swapped on page mappings to generate the next sequence.

5.2 Results

5.2.1 Effectiveness of DPExplore

Fig. 6 Evaluation under 5% Performance Penalty: DPExplore significantly reduces the vulnera-
bility at minimal runtime and power overheads

To demonstrate the effectiveness of DPExplore, we find the page partition with
the least vulnerability under 5% performance penalty and exploration width 2.
Fig. 6(a) plots the vulnerability ratio. Vulnerability Ratio indicates the ratio of the
vulnerability of the base case to that discovered by DPExplore. Similarly, Runtime
Ratio and Energy Ratio of the least vulnerability page partition obtained by DPEx-
plore are presented in Fig. 6(b). Thus, each ratio greater than 1 implies the reduction
of each metric. We observe 47× reduction in vulnerability on average, along with

Vulnerability Reduction under 5% Runtime Penalty

30.30
35.95

54.02

97.46

1.02 1.32 1.01 1.09

100.00 100.00 100.00

47.47

0.0 X

25.0 X

50.0 X

75.0 X

100.0 X

125.0 X

su
sa

n_c
orn

er
s

su
sa

n_e
dges

djp
eg

rij
ndae

l_
dec

rij
ndae

l_
en

c

blo
w
fis

h_d
ec

blo
w
fis

h_e
nc

FFT
sh

a
cr

c

st
rin

gse
ar

ch

A
ve

ra
ge

benchmarks

Vulnerability Ratio

(a) Vulnerability Reduction (A bar greater
than 1.0× indicates vulnerability reduction)

Energy and Runtime Overheads

under 5% Runtime Penalty

0.0 X

0.2 X

0.4 X

0.6 X

0.8 X

1.0 X

1.2 X

1.4 X

su
sa

n_c
orn

er
s

su
sa

n_e
dges

djp
eg

rij
ndae

l_
dec

rij
ndae

l_
en

c

blo
w
fis

h_d
ec

blo
w
fis

h_e
nc

FFT
sh

a
cr

c

st
rin

gse
ar

ch

A
ve

ra
ge

benchmarks

Energy Ratio Runtime Ratio

(b) Energy and Runtime Increase (A bar lower
than 1.0× indicates the overhead)

222 Kyoungwoo Lee, Aviral Shrivastava, Nikil Dutt, and Nalini Venkatasubramanian

only 0.5% degradation in runtime, and 15% increase in the total energy consump-
tion of the memory subsystem. Compared to the case when all data is mapped to
the protected 4 KB cache, i.e., the completely protected cache, the runtime and the
energy consumption of the page partition with DPExplore are improved by 36% and
9%, respectively. Thus, even very small runtime degradation allows DPExplore to
find page mappings that can significantly reduce the vulnerability.

5.2.2 Comparison with Other Explorations

Fig. 7 Exploration by MC, GA and DPExplore: DPExplore effectively explores the design space

We detail the results of exploration using MC, GA, and DPExplore over the susan
corners benchmark, when DPExplore is configured for 5% runtime penalty, and
exploration width 2. Fig. 7(a) plots the vulnerability as the exploration progresses
for MC, GA, and DPExplore. The plot shows that while MC is ineffective, GA
improves vulnerability by about 20×, but DPExplore consistently finds better page
mappings and is eventually able to reduce vulnerability by about 30×.

Fig. 7(b) and Fig. 7(c) plot the runtime, energy consumption, and vulnerability
of the page partitions searched by MC, GA, and DPExplore. Note that the y-axis
in these graphs – the vulnerability scale – is logarithmic. The most important ob-
servation that we make from these graphs is that DPExplore searches much more
useful page mappings (low vulnerability with low runtime and energy overheads),

Exploration Timeline

 X

5 X

10 X

15 X

20 X

25 X

30 X

35 X

0 500 1000 1500

Number of Page Mappings Explored

V
u

ln
er

ab
ili

ty
 R

ed
u

ct
io

n
 R

at
io

MC GA DPExplore

(a) Exploration Timeline

Runtime vs. Vulnerability (Susan Corners)

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.1E+06 1.2E+06 1.3E+06 1.4E+06 1.5E+06

Runtime (in Cycles)

V
u

ln
er

ab
ili

ty
 (

L
O

G
)

MC GA DPExplore

(b) Runtime and Vulnerability

Energy Consumption vs. Vulnerability (Susan Corners)

1.0E+07

1.0E+08

1.0E+09

1.0E+10

0.0E+00 2.0E+06 4.0E+06 6.0E+06

Energy Consumption (in nJoules)

V
u

ln
er

ab
ili

ty
 (

L
O

G
)

MC GA DPExplore

(c) Energy Consumption and Vulnerability

Exploration Speed

0.0001

0.001

0.01

0.1

1

1 X 5 X 10 X 15 X 20 X 25 X 30 X

Vulnerability Reduction Ratio

1/
T

im
e

(L
O

G
)

MC GA DPExplore

(d) Exploration Speed

Data Partitioning Techniques for Partially Protected Caches 223

as compared to MC and GA. We allow each exploration technique to evaluate 1,900
page mappings. Thus, in total there are 5,700 page mappings. Out of them only
83 are Pareto-optimal. A page mapping is Pareto-optimal, if it is no worse than
any other configuration in all the three dimensions, i.e., runtime, vulnerability and
energy. Out of these 83 Pareto-optimal page mappings, 68 were first drawn from
DPExplore searches (82%), 12 came from GA (14%), and only 3 were discovered
by MC (4%). This Pareto-optimal observation demonstrates the effectiveness of our
algorithm as compared to MC and GA. The main reason for the effectiveness of
DPExplore as compared to MC and GA explorations is that MC and GA ignore the
effects of partitioning on the runtime and energy consumption.

Finally, we compare the speed of the various exploration algorithms. Fig. 7(d)
plots the speed of exploration, i.e., inverse of the number of page partitions explored
to achieve a required vulnerability reduction. The plot shows that MC is quite inef-
fective. Among GA and DPExplore, GA is a faster approach when low reduction in
vulnerability is required, but it is unable to achieve high reductions in vulnerability.
This is where, our approach is really effective.

6 Summary

Owing to the incessant technology scaling, soft errors, especially in caches, are be-
coming a critical design concern for system reliability. Partially Protected Cache
(PPC) architecture has been proposed as an effective architectural means of improv-
ing system reliability without much power and performance penalty. However, the
challenge is in partitioning pages among the two caches in a PPC. While page par-
titioning schemes have been proposed for multimedia applications, there is no page
partitioning scheme for general applications. The page partitioning space is huge,
and existing random techniques are unable to identify and explore the page parti-
tions that lead to low vulnerability. In this paper, we develop DPExplore, a page
partitioning algorithm at design time that effectively and efficiently finds page par-
titions resulting in 47 times reduction in vulnerability, i.e., in failure rate, at only
0.5% performance and 15% energy penalty on average. The main contribution of
DPExplore is that it increases the applicability of PPC architectures and establishes
PPC as the solution of choice to improve reliability of cache-based architectures.

Our future work includes intelligent schemes to improve the data partitioning in
PPCs for the varying input data at runtime, and partitioning techniques for instruc-
tion PPC caches.

References

1. International Technology Roadmap for Semiconductors 2005 Executive Summary.
http://www.itrs.net/Links/2005ITRS/ExecSum2005.pdf.

2. L. Anghel and M. Nicolaidis. Cost reduction and evaluation of a temporary faults detecting
technique. In IEEE/ACM Design, Automation and Test in Europe Conference (DATE), pages

224 Kyoungwoo Lee, Aviral Shrivastava, Nikil Dutt, and Nalini Venkatasubramanian

591–597, 2000.
3. Ghazanfar-Hossein Asadi, Vilas Sridharan, Mehdi B. Tahoori, and David Kaeli. Balancing

performance and reliability in the memory hierarchy. In IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 269–279, 2005.

4. Robert Baumann. Soft errors in advanced computer systems. IEEE Design and Test of Com-
puters, pages 258–266, 2005.

5. Doug Burger and Todd M. Austin. The SimpleScalar Tool Set, version 2.0. SIGARCH Com-
puter Architecture News, 25(3):13–25, 1997.

6. D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, Toan Pham, C. Ziesler, D. Blaauw, T. Austin,
K. Flautner, and T. Mudge. Razor: A low-power pipeline based on circuit-level timing spec-
ulation. In IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 7–13,
2003.

7. J. Gaisler. Evaluation of a 32-bit microprocessor with builtin concurrent error-detection. In
IEEE International Symposium on Fault-Tolerant Computing (FTCS), 1997.

8. M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown. MiBench: A free,
commercially representative embedded benchmark suite. In IEEE Workshop on Workload
Characterization, pages 3–14, 2001.

9. P. Hazucha and C. Svensson. Impact of CMOS technology scaling on the atmospheric neutron
soft error rate. IEEE Trans. on Nuclear Science, 47(6):2586–2594, 2000.

10. Hewlett Packard, http://www.hp.com. HP iPAQ h4000 Series - System Specifications.
11. Soontae Kim. Area-efficient error protection for caches. In IEEE/ACM Design, Automation

and Test in Europe Conference (DATE), pages 1282–1287, Mar 2006.
12. S. Krishnamohan and N. R. Mahapatra. An efficient error-masking technique for improving

the soft-error robustness of static CMOS circuits. In IEEE International SOC Conference
(SOCC), pages 227–230, Sep 2004.

13. Kyoungwoo Lee, Aviral Shrivastava, Ilya Issenin, Nikil Dutt, and Nalini Venkatasubrama-
nian. Mitigating soft error failures for multimedia applications by selective data protection.
In International Conference on Compilers, Architecture, and Synthesis for Embedded Systems
(CASES), pages 411–420, Oct 2006.

14. Jin-Fu Li and Yu-Jane Huang. An error detection and correction scheme for RAMs with
partial-write function. In IEEE International Workshop on Memory Technology, Design and
Testing (MTDT), pages 115–120, 2005.

15. Lin Li, Vijay Degalahal, N. Vijaykrishnan, Mahmut Kandemir, and Mary Jane Irwin. Soft error
and energy consumption interactions: A data cache perspective. In International Symposium
on Low Power Electronics and Design (ISLPED), pages 132–137, Aug 2004.

16. P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson. On latching probability of particle
induced transients in combinational networks. In IEEE International Symposium on Fault-
Tolerant Computing (FTCS), 1994.

17. Subhasish Mitra, Norbert Seifert, Ming Zhang, Quan Shi, and Kee Sup Kim. Robust system
design with built-in soft-error resilience. IEEE Computer, 38(2):43–52, Feb 2005.

18. Kartik Mohanram and Nur A. Touba. Partial error masking to reduce soft error failure rate
in logic circuits. In IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT), pages 433–440, 2003.

19. K. Mohr and L. Clark. Delay and area efficient first-level cache soft error detection and
correction. In IEEE International Conference on Computer Design (ICCD), 2006.

20. Shubhendu S. Mukherjee, Joel Emer, Tryggve Fossum, and Steven K. Reinhardt. Cache scrub-
bing in microprocessors: Myth or necessity? In IEEE Pacific Rim International Symposium
on Dependable Computing (PRDC), pages 37–42, 2004.

21. Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Reinhardt, and Todd
Austin. A systematic methodology to compute the architectural vulnerability factors for a
high-performance microprocessor. In IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 29–40, Dec 2003.

22. M. Nicolaidis. Time redundancy based soft-error tolerance to rescue nanometer technologies.
In IEEE VLSI Test Symposium (VTS), page 86, 1999.

Data Partitioning Techniques for Partially Protected Caches 225

23. A. K. Nieuwland, S. Jasarevic, and G. Jerin. Combinational logic soft error analysis and
protection. In IEEE International Symposium on On-Line Testing (IOLTS), pages 99–104,
2006.

24. Richard Phelan. Addressing soft errors in ARM core-based designs. Technical report, ARM,
2003.

25. D. K. Pradhan. Fault-Tolerant Computer System Design. Prentice Hall, 1996. ISBN 0-1305-
7887-8.

26. Nhon Quach. High availability and reliability in the Itanium processor. IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pages 61–69, Sep–Oct 2000.

27. P. Shivakumar and N. Jouppi. CACTI 3.0: An Integrated Cache Timing, Power, and Area
Model. In WRL Technical Report 2001/2, 2001.

28. P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Modeling the effect of technol-
ogy trends on soft error rate of combinational logic. In IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 389–398, 2002.

29. Aviral Shrivastava, Ilya Issenin, and Nikil Dutt. Compilation techniques for energy reduction
in horizontally partitioned cache architectures. In International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES), pages 90–96, 2005.

30. Makoto Sugihara, Tohru Ishihara, and Kazuaki Murakami. Task scheduling for reliable cache
architectures of multiprocessor systems. In IEEE/ACM Design, Automation and Test in Europe
Conference (DATE), pages 1490–1495, 2007.

31. Synopsys Inc., Mountain View, CA, USA. Design Compiler Reference Manual, 2001.

